Loading…

Risk-hedging a European option with a convex risk measure and without no-arbitrage condition

In this article, we revisit the discrete-time problem of pricing a contingent claim with respect to a dynamic risk measure defined by its acceptance sets. Without any no-arbitrage condition, we show that it is possible to characterize the prices of a European claim. Our analysis reveals a natural we...

Full description

Saved in:
Bibliographic Details
Published in:Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2023-01, Vol.95 (1), p.118-155
Main Authors: Lepinette, Emmanuel, Zhao, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13
cites cdi_FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13
container_end_page 155
container_issue 1
container_start_page 118
container_title Stochastics (Abingdon, Eng. : 2005)
container_volume 95
creator Lepinette, Emmanuel
Zhao, Jun
description In this article, we revisit the discrete-time problem of pricing a contingent claim with respect to a dynamic risk measure defined by its acceptance sets. Without any no-arbitrage condition, we show that it is possible to characterize the prices of a European claim. Our analysis reveals a natural weak no-arbitrage condition that we study. This is a condition formulated in terms of the (risk) hedging prices instead of the attainable claims. Our approach is not based on a robust representation of the risk measure and we do not suppose the existence of a risk-neutral probability measure.
doi_str_mv 10.1080/17442508.2022.2055966
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2783517017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783517017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_QQj4vDWXzW76ppR6gYIg-iaE2U3SprZJTXat_ffu2uqjLzPDzDln4EPokpIRJZJc0zLPmSByxAhjXRFiXBRHaNDvMyZocfw3E3mKzlJaEpIzzskAvT279J4tjJ47P8eAp20MGwMeh03jgsdb1yy6dR38p_nCsRPjtYHURoPB659zaBvsQwaxck2EuenF2vXuc3RiYZXMxaEP0evd9GXykM2e7h8nt7Os5lI0mSDayKpiNc3FGKSQMhdlJUxeQWFrW9ecUmkKA6A5NWNiS2AF1ZUm3PKionyIrva5mxg-WpMatQxt9N1LxUrJBS0JLTuV2KvqGFKKxqpNdGuIO0WJ6kGqX5CqB6kOIDvfzd7nvA1xDdsQV1o1sFuFaCP42iXF_4_4Bi4ZewA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783517017</pqid></control><display><type>article</type><title>Risk-hedging a European option with a convex risk measure and without no-arbitrage condition</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lepinette, Emmanuel ; Zhao, Jun</creator><creatorcontrib>Lepinette, Emmanuel ; Zhao, Jun</creatorcontrib><description>In this article, we revisit the discrete-time problem of pricing a contingent claim with respect to a dynamic risk measure defined by its acceptance sets. Without any no-arbitrage condition, we show that it is possible to characterize the prices of a European claim. Our analysis reveals a natural weak no-arbitrage condition that we study. This is a condition formulated in terms of the (risk) hedging prices instead of the attainable claims. Our approach is not based on a robust representation of the risk measure and we do not suppose the existence of a risk-neutral probability measure.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2022.2055966</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>absence of instantaneous profit aip ; conditional essential infimum and supremum ; dynamic risk measures ; random sets ; Risk ; Risk-hedging prices</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2023-01, Vol.95 (1), p.118-155</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13</citedby><cites>FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><title>Risk-hedging a European option with a convex risk measure and without no-arbitrage condition</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>In this article, we revisit the discrete-time problem of pricing a contingent claim with respect to a dynamic risk measure defined by its acceptance sets. Without any no-arbitrage condition, we show that it is possible to characterize the prices of a European claim. Our analysis reveals a natural weak no-arbitrage condition that we study. This is a condition formulated in terms of the (risk) hedging prices instead of the attainable claims. Our approach is not based on a robust representation of the risk measure and we do not suppose the existence of a risk-neutral probability measure.</description><subject>absence of instantaneous profit aip</subject><subject>conditional essential infimum and supremum</subject><subject>dynamic risk measures</subject><subject>random sets</subject><subject>Risk</subject><subject>Risk-hedging prices</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_QQj4vDWXzW76ppR6gYIg-iaE2U3SprZJTXat_ffu2uqjLzPDzDln4EPokpIRJZJc0zLPmSByxAhjXRFiXBRHaNDvMyZocfw3E3mKzlJaEpIzzskAvT279J4tjJ47P8eAp20MGwMeh03jgsdb1yy6dR38p_nCsRPjtYHURoPB659zaBvsQwaxck2EuenF2vXuc3RiYZXMxaEP0evd9GXykM2e7h8nt7Os5lI0mSDayKpiNc3FGKSQMhdlJUxeQWFrW9ecUmkKA6A5NWNiS2AF1ZUm3PKionyIrva5mxg-WpMatQxt9N1LxUrJBS0JLTuV2KvqGFKKxqpNdGuIO0WJ6kGqX5CqB6kOIDvfzd7nvA1xDdsQV1o1sFuFaCP42iXF_4_4Bi4ZewA</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Lepinette, Emmanuel</creator><creator>Zhao, Jun</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230102</creationdate><title>Risk-hedging a European option with a convex risk measure and without no-arbitrage condition</title><author>Lepinette, Emmanuel ; Zhao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absence of instantaneous profit aip</topic><topic>conditional essential infimum and supremum</topic><topic>dynamic risk measures</topic><topic>random sets</topic><topic>Risk</topic><topic>Risk-hedging prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepinette, Emmanuel</au><au>Zhao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-hedging a European option with a convex risk measure and without no-arbitrage condition</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>95</volume><issue>1</issue><spage>118</spage><epage>155</epage><pages>118-155</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>In this article, we revisit the discrete-time problem of pricing a contingent claim with respect to a dynamic risk measure defined by its acceptance sets. Without any no-arbitrage condition, we show that it is possible to characterize the prices of a European claim. Our analysis reveals a natural weak no-arbitrage condition that we study. This is a condition formulated in terms of the (risk) hedging prices instead of the attainable claims. Our approach is not based on a robust representation of the risk measure and we do not suppose the existence of a risk-neutral probability measure.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17442508.2022.2055966</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-2508
ispartof Stochastics (Abingdon, Eng. : 2005), 2023-01, Vol.95 (1), p.118-155
issn 1744-2508
1744-2516
language eng
recordid cdi_proquest_journals_2783517017
source Taylor and Francis Science and Technology Collection
subjects absence of instantaneous profit aip
conditional essential infimum and supremum
dynamic risk measures
random sets
Risk
Risk-hedging prices
title Risk-hedging a European option with a convex risk measure and without no-arbitrage condition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-hedging%20a%20European%20option%20with%20a%20convex%20risk%20measure%20and%20without%20no-arbitrage%20condition&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=Lepinette,%20Emmanuel&rft.date=2023-01-02&rft.volume=95&rft.issue=1&rft.spage=118&rft.epage=155&rft.pages=118-155&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2022.2055966&rft_dat=%3Cproquest_cross%3E2783517017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-50de8bb2c1459a8588457b5e4ba6fcfcc3118e6eaad31e90f7a261dbd03f36b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2783517017&rft_id=info:pmid/&rfr_iscdi=true