Loading…
Ideal structure of C-algebras of commuting local homeomorphisms
We determine the primitive ideal space and hence the ideal lattice of a large class of separable groupoid C*-algebras that includes all 2-graph C*-algebras. A key ingredient is the notion of harmonious families of bisections in etale groupoids associated to finite families of commuting local homeomo...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Brix, Kevin Aguyar Toke Meier Carlsen Sims, Aidan |
description | We determine the primitive ideal space and hence the ideal lattice of a large class of separable groupoid C*-algebras that includes all 2-graph C*-algebras. A key ingredient is the notion of harmonious families of bisections in etale groupoids associated to finite families of commuting local homeomorphisms. Our results unify and recover all known results on ideal structure for crossed products of commutative C*-algebras by free abelian groups, for graph C*-algebras, and for Katsura's topological graph C*-algebras. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784118734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784118734</sourcerecordid><originalsourceid>FETCH-proquest_journals_27841187343</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgutElqunNRFN27L7G-_kj6al5yfyt4AFfDMLNhiZCyyColxI6lRFOe5-KkRVnKhJ3vLzCWU_CxDdEDx47XmbE9PL2hr7XoXAzj3HOL7boO6AAd-mUYydGBbTtjCdIf9-x4vTzqW7Z4fEeg0EwY_bymRuhKFUWlpZL_XR8NQDkB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784118734</pqid></control><display><type>article</type><title>Ideal structure of C-algebras of commuting local homeomorphisms</title><source>Publicly Available Content Database</source><creator>Brix, Kevin Aguyar ; Toke Meier Carlsen ; Sims, Aidan</creator><creatorcontrib>Brix, Kevin Aguyar ; Toke Meier Carlsen ; Sims, Aidan</creatorcontrib><description>We determine the primitive ideal space and hence the ideal lattice of a large class of separable groupoid C*-algebras that includes all 2-graph C*-algebras. A key ingredient is the notion of harmonious families of bisections in etale groupoids associated to finite families of commuting local homeomorphisms. Our results unify and recover all known results on ideal structure for crossed products of commutative C*-algebras by free abelian groups, for graph C*-algebras, and for Katsura's topological graph C*-algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Group theory ; Topology</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2784118734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Brix, Kevin Aguyar</creatorcontrib><creatorcontrib>Toke Meier Carlsen</creatorcontrib><creatorcontrib>Sims, Aidan</creatorcontrib><title>Ideal structure of C-algebras of commuting local homeomorphisms</title><title>arXiv.org</title><description>We determine the primitive ideal space and hence the ideal lattice of a large class of separable groupoid C*-algebras that includes all 2-graph C*-algebras. A key ingredient is the notion of harmonious families of bisections in etale groupoids associated to finite families of commuting local homeomorphisms. Our results unify and recover all known results on ideal structure for crossed products of commutative C*-algebras by free abelian groups, for graph C*-algebras, and for Katsura's topological graph C*-algebras.</description><subject>Algebra</subject><subject>Group theory</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgutElqunNRFN27L7G-_kj6al5yfyt4AFfDMLNhiZCyyColxI6lRFOe5-KkRVnKhJ3vLzCWU_CxDdEDx47XmbE9PL2hr7XoXAzj3HOL7boO6AAd-mUYydGBbTtjCdIf9-x4vTzqW7Z4fEeg0EwY_bymRuhKFUWlpZL_XR8NQDkB</recordid><startdate>20231217</startdate><enddate>20231217</enddate><creator>Brix, Kevin Aguyar</creator><creator>Toke Meier Carlsen</creator><creator>Sims, Aidan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231217</creationdate><title>Ideal structure of C-algebras of commuting local homeomorphisms</title><author>Brix, Kevin Aguyar ; Toke Meier Carlsen ; Sims, Aidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27841187343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Brix, Kevin Aguyar</creatorcontrib><creatorcontrib>Toke Meier Carlsen</creatorcontrib><creatorcontrib>Sims, Aidan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brix, Kevin Aguyar</au><au>Toke Meier Carlsen</au><au>Sims, Aidan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ideal structure of C-algebras of commuting local homeomorphisms</atitle><jtitle>arXiv.org</jtitle><date>2023-12-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We determine the primitive ideal space and hence the ideal lattice of a large class of separable groupoid C*-algebras that includes all 2-graph C*-algebras. A key ingredient is the notion of harmonious families of bisections in etale groupoids associated to finite families of commuting local homeomorphisms. Our results unify and recover all known results on ideal structure for crossed products of commutative C*-algebras by free abelian groups, for graph C*-algebras, and for Katsura's topological graph C*-algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2784118734 |
source | Publicly Available Content Database |
subjects | Algebra Group theory Topology |
title | Ideal structure of C-algebras of commuting local homeomorphisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ideal%20structure%20of%20C-algebras%20of%20commuting%20local%20homeomorphisms&rft.jtitle=arXiv.org&rft.au=Brix,%20Kevin%20Aguyar&rft.date=2023-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784118734%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27841187343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784118734&rft_id=info:pmid/&rfr_iscdi=true |