Loading…

N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries

A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-02, Vol.2023 (2), p.176
Main Authors: de Mello Koch, Robert, Ramgoolam, Sanjaye
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 176
container_title The journal of high energy physics
container_volume 2023
creator de Mello Koch, Robert
Ramgoolam, Sanjaye
description A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of R (8 | 8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2 , 2 | 4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.
doi_str_mv 10.1007/JHEP02(2023)176
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2784119213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778138769</sourcerecordid><originalsourceid>FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563</originalsourceid><addsrcrecordid>eNp90D1LA0EQgOFFEIzR2nbBJgFPd_Z7CwsJ0SgxCmphdeydk3gh95HduyL_3gsR7KymeZhhXkIugF0DY-bmaTZ9ZXzEGRdjMPqIDIBxl1hp3Ak5jXHNGChwbEAWC3pLJX37fL6io9g1GMZJU292VV0WfkNDUa0i9dUXxRLDCquWbjtftV1JS8y_fVXkvYq7ssQ2FBjPyPHSbyKe_84h-bifvk9myfzl4XFyN08arnibWCW0skxmzGkplWPolx5zBbkGzB0Ib4xDoazwAMpJ76xwOuMmkwK10mJILg97m1BvO4xtuq67UPUnU26sBHAcxP_KWBDWaNcrdlCx2b-L4U8BS_c900PPdN8z7XuKH7jQZxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778138769</pqid></control><display><type>article</type><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>de Mello Koch, Robert ; Ramgoolam, Sanjaye</creator><creatorcontrib>de Mello Koch, Robert ; Ramgoolam, Sanjaye</creatorcontrib><description>A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of R (8 | 8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2 , 2 | 4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2023)176</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Differential equations ; Elementary Particles ; Generators ; High energy physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theories ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Representations ; Rings (mathematics) ; String Theory ; Theoretical physics</subject><ispartof>The journal of high energy physics, 2023-02, Vol.2023 (2), p.176</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2784119213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2784119213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>de Mello Koch, Robert</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of R (8 | 8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2 , 2 | 4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential equations</subject><subject>Elementary Particles</subject><subject>Generators</subject><subject>High energy physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Representations</subject><subject>Rings (mathematics)</subject><subject>String Theory</subject><subject>Theoretical physics</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90D1LA0EQgOFFEIzR2nbBJgFPd_Z7CwsJ0SgxCmphdeydk3gh95HduyL_3gsR7KymeZhhXkIugF0DY-bmaTZ9ZXzEGRdjMPqIDIBxl1hp3Ak5jXHNGChwbEAWC3pLJX37fL6io9g1GMZJU292VV0WfkNDUa0i9dUXxRLDCquWbjtftV1JS8y_fVXkvYq7ssQ2FBjPyPHSbyKe_84h-bifvk9myfzl4XFyN08arnibWCW0skxmzGkplWPolx5zBbkGzB0Ib4xDoazwAMpJ76xwOuMmkwK10mJILg97m1BvO4xtuq67UPUnU26sBHAcxP_KWBDWaNcrdlCx2b-L4U8BS_c900PPdN8z7XuKH7jQZxY</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>de Mello Koch, Robert</creator><creator>Ramgoolam, Sanjaye</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230217</creationdate><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><author>de Mello Koch, Robert ; Ramgoolam, Sanjaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential equations</topic><topic>Elementary Particles</topic><topic>Generators</topic><topic>High energy physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Representations</topic><topic>Rings (mathematics)</topic><topic>String Theory</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello Koch, Robert</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello Koch, Robert</au><au>Ramgoolam, Sanjaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-02-17</date><risdate>2023</risdate><volume>2023</volume><issue>2</issue><spage>176</spage><pages>176-</pages><eissn>1029-8479</eissn><abstract>A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of R (8 | 8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2 , 2 | 4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2023)176</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1029-8479
ispartof The journal of high energy physics, 2023-02, Vol.2023 (2), p.176
issn 1029-8479
language eng
recordid cdi_proquest_journals_2784119213
source Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest)
subjects Algebra
Classical and Quantum Gravitation
Differential equations
Elementary Particles
Generators
High energy physics
Operators (mathematics)
Physics
Physics and Astronomy
Polynomials
Quantum Field Theories
Quantum Field Theory
Quantum mechanics
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Representations
Rings (mathematics)
String Theory
Theoretical physics
title N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%20=%204%20SYM,%20(super)-polynomial%20rings%20and%20emergent%20quantum%20mechanical%20symmetries&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=de%20Mello%20Koch,%20Robert&rft.date=2023-02-17&rft.volume=2023&rft.issue=2&rft.spage=176&rft.pages=176-&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2023)176&rft_dat=%3Cproquest_sprin%3E2778138769%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2778138769&rft_id=info:pmid/&rfr_iscdi=true