Loading…
N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries
A bstract The structure of half-BPS representations of psu(2 , 2 | 4) leads to the definition of a super-polynomial ring R (8 | 8) which admits a realisation of psu(2 , 2 | 4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes...
Saved in:
Published in: | The journal of high energy physics 2023-02, Vol.2023 (2), p.176 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 176 |
container_title | The journal of high energy physics |
container_volume | 2023 |
creator | de Mello Koch, Robert Ramgoolam, Sanjaye |
description | A
bstract
The structure of half-BPS representations of psu(2
,
2
|
4) leads to the definition of a super-polynomial ring
R
(8
|
8) which admits a realisation of psu(2
,
2
|
4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of
R
(8
|
8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2
,
2
|
4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators. |
doi_str_mv | 10.1007/JHEP02(2023)176 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2784119213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778138769</sourcerecordid><originalsourceid>FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563</originalsourceid><addsrcrecordid>eNp90D1LA0EQgOFFEIzR2nbBJgFPd_Z7CwsJ0SgxCmphdeydk3gh95HduyL_3gsR7KymeZhhXkIugF0DY-bmaTZ9ZXzEGRdjMPqIDIBxl1hp3Ak5jXHNGChwbEAWC3pLJX37fL6io9g1GMZJU292VV0WfkNDUa0i9dUXxRLDCquWbjtftV1JS8y_fVXkvYq7ssQ2FBjPyPHSbyKe_84h-bifvk9myfzl4XFyN08arnibWCW0skxmzGkplWPolx5zBbkGzB0Ib4xDoazwAMpJ76xwOuMmkwK10mJILg97m1BvO4xtuq67UPUnU26sBHAcxP_KWBDWaNcrdlCx2b-L4U8BS_c900PPdN8z7XuKH7jQZxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778138769</pqid></control><display><type>article</type><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>de Mello Koch, Robert ; Ramgoolam, Sanjaye</creator><creatorcontrib>de Mello Koch, Robert ; Ramgoolam, Sanjaye</creatorcontrib><description>A
bstract
The structure of half-BPS representations of psu(2
,
2
|
4) leads to the definition of a super-polynomial ring
R
(8
|
8) which admits a realisation of psu(2
,
2
|
4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of
R
(8
|
8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2
,
2
|
4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2023)176</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Differential equations ; Elementary Particles ; Generators ; High energy physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theories ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Representations ; Rings (mathematics) ; String Theory ; Theoretical physics</subject><ispartof>The journal of high energy physics, 2023-02, Vol.2023 (2), p.176</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2784119213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2784119213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>de Mello Koch, Robert</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
The structure of half-BPS representations of psu(2
,
2
|
4) leads to the definition of a super-polynomial ring
R
(8
|
8) which admits a realisation of psu(2
,
2
|
4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of
R
(8
|
8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2
,
2
|
4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential equations</subject><subject>Elementary Particles</subject><subject>Generators</subject><subject>High energy physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Representations</subject><subject>Rings (mathematics)</subject><subject>String Theory</subject><subject>Theoretical physics</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90D1LA0EQgOFFEIzR2nbBJgFPd_Z7CwsJ0SgxCmphdeydk3gh95HduyL_3gsR7KymeZhhXkIugF0DY-bmaTZ9ZXzEGRdjMPqIDIBxl1hp3Ak5jXHNGChwbEAWC3pLJX37fL6io9g1GMZJU292VV0WfkNDUa0i9dUXxRLDCquWbjtftV1JS8y_fVXkvYq7ssQ2FBjPyPHSbyKe_84h-bifvk9myfzl4XFyN08arnibWCW0skxmzGkplWPolx5zBbkGzB0Ib4xDoazwAMpJ76xwOuMmkwK10mJILg97m1BvO4xtuq67UPUnU26sBHAcxP_KWBDWaNcrdlCx2b-L4U8BS_c900PPdN8z7XuKH7jQZxY</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>de Mello Koch, Robert</creator><creator>Ramgoolam, Sanjaye</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230217</creationdate><title>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</title><author>de Mello Koch, Robert ; Ramgoolam, Sanjaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential equations</topic><topic>Elementary Particles</topic><topic>Generators</topic><topic>High energy physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Representations</topic><topic>Rings (mathematics)</topic><topic>String Theory</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello Koch, Robert</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello Koch, Robert</au><au>Ramgoolam, Sanjaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-02-17</date><risdate>2023</risdate><volume>2023</volume><issue>2</issue><spage>176</spage><pages>176-</pages><eissn>1029-8479</eissn><abstract>A
bstract
The structure of half-BPS representations of psu(2
,
2
|
4) leads to the definition of a super-polynomial ring
R
(8
|
8) which admits a realisation of psu(2
,
2
|
4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of
R
(8
|
8). The half-BPS representation is realized by quotienting the super-ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2
,
2
|
4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2023)176</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2023-02, Vol.2023 (2), p.176 |
issn | 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2784119213 |
source | Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest) |
subjects | Algebra Classical and Quantum Gravitation Differential equations Elementary Particles Generators High energy physics Operators (mathematics) Physics Physics and Astronomy Polynomials Quantum Field Theories Quantum Field Theory Quantum mechanics Quantum Physics Regular Article - Theoretical Physics Relativity Theory Representations Rings (mathematics) String Theory Theoretical physics |
title | N = 4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%20=%204%20SYM,%20(super)-polynomial%20rings%20and%20emergent%20quantum%20mechanical%20symmetries&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=de%20Mello%20Koch,%20Robert&rft.date=2023-02-17&rft.volume=2023&rft.issue=2&rft.spage=176&rft.pages=176-&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2023)176&rft_dat=%3Cproquest_sprin%3E2778138769%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p252t-85365804b09644590eafaec51c61ec913a779e3583a11594a98396b27b43e6563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2778138769&rft_id=info:pmid/&rfr_iscdi=true |