Loading…

Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter

In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-09
Main Authors: Robin Fynn Diedrichs, Becker, Niklas, Jockel, Cédric, Jan-Erik, Christian, Sagunski, Laura, Schaffner-Bielich, Jürgen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Robin Fynn Diedrichs
Becker, Niklas
Jockel, Cédric
Jan-Erik, Christian
Sagunski, Laura
Schaffner-Bielich, Jürgen
description In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.
doi_str_mv 10.48550/arxiv.2303.04089
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784696000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784696000</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-af7008f930440b143dfa1f16472a43a719e96dbc266d3b2f916e987d31c895ef3</originalsourceid><addsrcrecordid>eNo1j71OwzAYRS0kJKrSB2CzxJzgvzg2W2kpIAUYCCvVl9qmLkkMjgPl7akETFdnOUcXoTNKcqGKglxA3PvPnHHCcyKI0kdowjinmRKMnaDZMOwIIUyWrCj4BL3U3kCLl9aF2EHjW5--cXB4ZWPnQ59dhSH0-ClBHC7xgx1T_Ec8N53fW4O_fNri5zZFyCr_uk14CfEN30NKNp6iYwftYGd_O0X16rpe3GbV483dYl5loAudgSsJUU5zIgRpqODGAXVUipKB4FBSbbU0zYZJaXjDnKbSalUaTjdKF9bxKTr_1b7H8DHaIa13YYz9obhmpRJSy8Nn_gO4blSq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784696000</pqid></control><display><type>article</type><title>Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Robin Fynn Diedrichs ; Becker, Niklas ; Jockel, Cédric ; Jan-Erik, Christian ; Sagunski, Laura ; Schaffner-Bielich, Jürgen</creator><creatorcontrib>Robin Fynn Diedrichs ; Becker, Niklas ; Jockel, Cédric ; Jan-Erik, Christian ; Sagunski, Laura ; Schaffner-Bielich, Jürgen</creatorcontrib><description>In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2303.04089</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Dark matter ; Deformation effects ; Equations of state ; Fermions ; Formability ; Neutron stars ; Neutrons ; Scalars</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2784696000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Robin Fynn Diedrichs</creatorcontrib><creatorcontrib>Becker, Niklas</creatorcontrib><creatorcontrib>Jockel, Cédric</creatorcontrib><creatorcontrib>Jan-Erik, Christian</creatorcontrib><creatorcontrib>Sagunski, Laura</creatorcontrib><creatorcontrib>Schaffner-Bielich, Jürgen</creatorcontrib><title>Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter</title><title>arXiv.org</title><description>In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.</description><subject>Configurations</subject><subject>Dark matter</subject><subject>Deformation effects</subject><subject>Equations of state</subject><subject>Fermions</subject><subject>Formability</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Scalars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1j71OwzAYRS0kJKrSB2CzxJzgvzg2W2kpIAUYCCvVl9qmLkkMjgPl7akETFdnOUcXoTNKcqGKglxA3PvPnHHCcyKI0kdowjinmRKMnaDZMOwIIUyWrCj4BL3U3kCLl9aF2EHjW5--cXB4ZWPnQ59dhSH0-ClBHC7xgx1T_Ec8N53fW4O_fNri5zZFyCr_uk14CfEN30NKNp6iYwftYGd_O0X16rpe3GbV483dYl5loAudgSsJUU5zIgRpqODGAXVUipKB4FBSbbU0zYZJaXjDnKbSalUaTjdKF9bxKTr_1b7H8DHaIa13YYz9obhmpRJSy8Nn_gO4blSq</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Robin Fynn Diedrichs</creator><creator>Becker, Niklas</creator><creator>Jockel, Cédric</creator><creator>Jan-Erik, Christian</creator><creator>Sagunski, Laura</creator><creator>Schaffner-Bielich, Jürgen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230922</creationdate><title>Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter</title><author>Robin Fynn Diedrichs ; Becker, Niklas ; Jockel, Cédric ; Jan-Erik, Christian ; Sagunski, Laura ; Schaffner-Bielich, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-af7008f930440b143dfa1f16472a43a719e96dbc266d3b2f916e987d31c895ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configurations</topic><topic>Dark matter</topic><topic>Deformation effects</topic><topic>Equations of state</topic><topic>Fermions</topic><topic>Formability</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Scalars</topic><toplevel>online_resources</toplevel><creatorcontrib>Robin Fynn Diedrichs</creatorcontrib><creatorcontrib>Becker, Niklas</creatorcontrib><creatorcontrib>Jockel, Cédric</creatorcontrib><creatorcontrib>Jan-Erik, Christian</creatorcontrib><creatorcontrib>Sagunski, Laura</creatorcontrib><creatorcontrib>Schaffner-Bielich, Jürgen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robin Fynn Diedrichs</au><au>Becker, Niklas</au><au>Jockel, Cédric</au><au>Jan-Erik, Christian</au><au>Sagunski, Laura</au><au>Schaffner-Bielich, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter</atitle><jtitle>arXiv.org</jtitle><date>2023-09-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2303.04089</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2784696000
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Configurations
Dark matter
Deformation effects
Equations of state
Fermions
Formability
Neutron stars
Neutrons
Scalars
title Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tidal%20Deformability%20of%20Fermion-Boson%20Stars:%20Neutron%20Stars%20Admixed%20with%20Ultra-Light%20Dark%20Matter&rft.jtitle=arXiv.org&rft.au=Robin%20Fynn%20Diedrichs&rft.date=2023-09-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2303.04089&rft_dat=%3Cproquest%3E2784696000%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-af7008f930440b143dfa1f16472a43a719e96dbc266d3b2f916e987d31c895ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784696000&rft_id=info:pmid/&rfr_iscdi=true