Loading…
A three-dimensional nonlinear rock damage creep model with double damage factors and residual strength
Creep failure behavior of rock is the focus of research on rock rheology and affects the stability and safety of slopes and underground structure. Based on continuous damage mechanics and the physical damage mechanism, double variables of time-dependent damages are defined here to further investigat...
Saved in:
Published in: | Natural hazards (Dordrecht) 2023-02, Vol.115 (3), p.2205-2222 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Creep failure behavior of rock is the focus of research on rock rheology and affects the stability and safety of slopes and underground structure. Based on continuous damage mechanics and the physical damage mechanism, double variables of time-dependent damages are defined here to further investigate the creep behaviors of rock. A new viscoelastic-plastic damage element and residual strength correction factor are first introduced to construct a novel double damage factor for the creep constitutive model. Furthermore, three-dimensional creep equations are derived for considering the yield criterion, plastic potential function, and flow law. Finally, the experimental data and the Burgers model have conducted a series of validations on the proposed model. Results show that the model proposed here can accurately capture the creep characteristics of rock, especially in simulating accelerated creep. The proposed model is more advantageous than the Burgers model and provides some reference for practical engineering design and safety monitoring. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-022-05634-y |