Loading…
Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes
Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in...
Saved in:
Published in: | Nanoscale 2023-03, Vol.15 (1), p.4951-4961 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3 |
container_end_page | 4961 |
container_issue | 1 |
container_start_page | 4951 |
container_title | Nanoscale |
container_volume | 15 |
creator | Harari, Yuval Pathak, Chandra Shakher Edri, Eran |
description | Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers ( |
doi_str_mv | 10.1039/d2nr06530d |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2784814336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784814336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</originalsourceid><addsrcrecordid>eNpd0U1P3DAQBmCrKioUeum9lSUuFVKKPxI74YagfEgUpKo9R7P2RBtw7MVOoPvv8bKwSJw8kp8Z2fMS8pWzn5zJ5tAKH5mqJLMfyI5gJSuk1OLjplblNvmc0i1jqpFKfiLbUulaCVbtkP-_g0MzOYg0ooNlor2nHnwYcMRYJAMOKbhp6D0cUew6NGP_gBS9gUXKfWMfPO1CpI_w3DDNBowJLZ2D6y3SBcbwkO76MZfzMAYD4zxYTHtkqwOX8MvLuUv-nf36e3JRXN2cX54cXxUmf2IsZgBCyLLiUOtGosVa13WjORNVV2urSiUb6HinNTccG2EMVnJmOVMsu3Imd8mP9dxFDPcTprEd-mTQOfAYptQKrVXFm4axTPff0dswRZ9fl1Vd1rzMu8zqYK1MDClF7NpF7AeIy5azdpVHeyqu_zzncZrx95eRq73YDX0NIINvaxCT2dy-BSqfAAdQkOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784814336</pqid></control><display><type>article</type><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><source>Royal Society of Chemistry</source><creator>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</creator><creatorcontrib>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</creatorcontrib><description>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (<10 nm) of Al
2
O
3
deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO
2
-saturated aqueous electrolyte and a photocurrent of ∼100 μA cm
−2
(at ∼−0.32 V
vs.
Ag/AgCl) was measured, the highest reported for CsPbBr
3
based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels.
Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06530d</identifier><identifier>PMID: 36786205</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Aqueous electrolytes ; Aqueous solutions ; Atomic layer epitaxy ; Conduction bands ; Electrolytic cells ; Electron transport ; Embedding ; Encapsulation ; Insulation ; Metal particles ; Organic chemistry ; Perovskites ; Photocathodes ; Photoelectric effect ; Photovoltaic cells ; Silver ; Solar cells</subject><ispartof>Nanoscale, 2023-03, Vol.15 (1), p.4951-4961</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</citedby><cites>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</cites><orcidid>0000-0003-4593-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36786205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harari, Yuval</creatorcontrib><creatorcontrib>Pathak, Chandra Shakher</creatorcontrib><creatorcontrib>Edri, Eran</creatorcontrib><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (<10 nm) of Al
2
O
3
deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO
2
-saturated aqueous electrolyte and a photocurrent of ∼100 μA cm
−2
(at ∼−0.32 V
vs.
Ag/AgCl) was measured, the highest reported for CsPbBr
3
based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels.
Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</description><subject>Aluminum oxide</subject><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>Atomic layer epitaxy</subject><subject>Conduction bands</subject><subject>Electrolytic cells</subject><subject>Electron transport</subject><subject>Embedding</subject><subject>Encapsulation</subject><subject>Insulation</subject><subject>Metal particles</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Silver</subject><subject>Solar cells</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1P3DAQBmCrKioUeum9lSUuFVKKPxI74YagfEgUpKo9R7P2RBtw7MVOoPvv8bKwSJw8kp8Z2fMS8pWzn5zJ5tAKH5mqJLMfyI5gJSuk1OLjplblNvmc0i1jqpFKfiLbUulaCVbtkP-_g0MzOYg0ooNlor2nHnwYcMRYJAMOKbhp6D0cUew6NGP_gBS9gUXKfWMfPO1CpI_w3DDNBowJLZ2D6y3SBcbwkO76MZfzMAYD4zxYTHtkqwOX8MvLuUv-nf36e3JRXN2cX54cXxUmf2IsZgBCyLLiUOtGosVa13WjORNVV2urSiUb6HinNTccG2EMVnJmOVMsu3Imd8mP9dxFDPcTprEd-mTQOfAYptQKrVXFm4axTPff0dswRZ9fl1Vd1rzMu8zqYK1MDClF7NpF7AeIy5azdpVHeyqu_zzncZrx95eRq73YDX0NIINvaxCT2dy-BSqfAAdQkOI</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Harari, Yuval</creator><creator>Pathak, Chandra Shakher</creator><creator>Edri, Eran</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4593-6489</orcidid></search><sort><creationdate>20230309</creationdate><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><author>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>Atomic layer epitaxy</topic><topic>Conduction bands</topic><topic>Electrolytic cells</topic><topic>Electron transport</topic><topic>Embedding</topic><topic>Encapsulation</topic><topic>Insulation</topic><topic>Metal particles</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Silver</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harari, Yuval</creatorcontrib><creatorcontrib>Pathak, Chandra Shakher</creatorcontrib><creatorcontrib>Edri, Eran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harari, Yuval</au><au>Pathak, Chandra Shakher</au><au>Edri, Eran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-03-09</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>4951</spage><epage>4961</epage><pages>4951-4961</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (<10 nm) of Al
2
O
3
deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO
2
-saturated aqueous electrolyte and a photocurrent of ∼100 μA cm
−2
(at ∼−0.32 V
vs.
Ag/AgCl) was measured, the highest reported for CsPbBr
3
based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels.
Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36786205</pmid><doi>10.1039/d2nr06530d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4593-6489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-03, Vol.15 (1), p.4951-4961 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2784814336 |
source | Royal Society of Chemistry |
subjects | Aluminum oxide Aqueous electrolytes Aqueous solutions Atomic layer epitaxy Conduction bands Electrolytic cells Electron transport Embedding Encapsulation Insulation Metal particles Organic chemistry Perovskites Photocathodes Photoelectric effect Photovoltaic cells Silver Solar cells |
title | Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20relays%20in%20nanometer-scale%20alumina:%20effective%20encapsulation%20for%20water-submersed%20halide%20perovskite%20photocathodes&rft.jtitle=Nanoscale&rft.au=Harari,%20Yuval&rft.date=2023-03-09&rft.volume=15&rft.issue=1&rft.spage=4951&rft.epage=4961&rft.pages=4951-4961&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06530d&rft_dat=%3Cproquest_pubme%3E2784814336%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784814336&rft_id=info:pmid/36786205&rfr_iscdi=true |