Loading…

Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes

Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-03, Vol.15 (1), p.4951-4961
Main Authors: Harari, Yuval, Pathak, Chandra Shakher, Edri, Eran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3
cites cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3
container_end_page 4961
container_issue 1
container_start_page 4951
container_title Nanoscale
container_volume 15
creator Harari, Yuval
Pathak, Chandra Shakher
Edri, Eran
description Halide perovskite (HaP) solar cells have an excellent voltage efficiency (>70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (
doi_str_mv 10.1039/d2nr06530d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2784814336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784814336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</originalsourceid><addsrcrecordid>eNpd0U1P3DAQBmCrKioUeum9lSUuFVKKPxI74YagfEgUpKo9R7P2RBtw7MVOoPvv8bKwSJw8kp8Z2fMS8pWzn5zJ5tAKH5mqJLMfyI5gJSuk1OLjplblNvmc0i1jqpFKfiLbUulaCVbtkP-_g0MzOYg0ooNlor2nHnwYcMRYJAMOKbhp6D0cUew6NGP_gBS9gUXKfWMfPO1CpI_w3DDNBowJLZ2D6y3SBcbwkO76MZfzMAYD4zxYTHtkqwOX8MvLuUv-nf36e3JRXN2cX54cXxUmf2IsZgBCyLLiUOtGosVa13WjORNVV2urSiUb6HinNTccG2EMVnJmOVMsu3Imd8mP9dxFDPcTprEd-mTQOfAYptQKrVXFm4axTPff0dswRZ9fl1Vd1rzMu8zqYK1MDClF7NpF7AeIy5azdpVHeyqu_zzncZrx95eRq73YDX0NIINvaxCT2dy-BSqfAAdQkOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784814336</pqid></control><display><type>article</type><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><source>Royal Society of Chemistry</source><creator>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</creator><creatorcontrib>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</creatorcontrib><description>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (&gt;70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (&lt;10 nm) of Al 2 O 3 deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO 2 -saturated aqueous electrolyte and a photocurrent of ∼100 μA cm −2 (at ∼−0.32 V vs. Ag/AgCl) was measured, the highest reported for CsPbBr 3 based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels. Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06530d</identifier><identifier>PMID: 36786205</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Aqueous electrolytes ; Aqueous solutions ; Atomic layer epitaxy ; Conduction bands ; Electrolytic cells ; Electron transport ; Embedding ; Encapsulation ; Insulation ; Metal particles ; Organic chemistry ; Perovskites ; Photocathodes ; Photoelectric effect ; Photovoltaic cells ; Silver ; Solar cells</subject><ispartof>Nanoscale, 2023-03, Vol.15 (1), p.4951-4961</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</citedby><cites>FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</cites><orcidid>0000-0003-4593-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36786205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harari, Yuval</creatorcontrib><creatorcontrib>Pathak, Chandra Shakher</creatorcontrib><creatorcontrib>Edri, Eran</creatorcontrib><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (&gt;70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (&lt;10 nm) of Al 2 O 3 deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO 2 -saturated aqueous electrolyte and a photocurrent of ∼100 μA cm −2 (at ∼−0.32 V vs. Ag/AgCl) was measured, the highest reported for CsPbBr 3 based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels. Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</description><subject>Aluminum oxide</subject><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>Atomic layer epitaxy</subject><subject>Conduction bands</subject><subject>Electrolytic cells</subject><subject>Electron transport</subject><subject>Embedding</subject><subject>Encapsulation</subject><subject>Insulation</subject><subject>Metal particles</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Silver</subject><subject>Solar cells</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1P3DAQBmCrKioUeum9lSUuFVKKPxI74YagfEgUpKo9R7P2RBtw7MVOoPvv8bKwSJw8kp8Z2fMS8pWzn5zJ5tAKH5mqJLMfyI5gJSuk1OLjplblNvmc0i1jqpFKfiLbUulaCVbtkP-_g0MzOYg0ooNlor2nHnwYcMRYJAMOKbhp6D0cUew6NGP_gBS9gUXKfWMfPO1CpI_w3DDNBowJLZ2D6y3SBcbwkO76MZfzMAYD4zxYTHtkqwOX8MvLuUv-nf36e3JRXN2cX54cXxUmf2IsZgBCyLLiUOtGosVa13WjORNVV2urSiUb6HinNTccG2EMVnJmOVMsu3Imd8mP9dxFDPcTprEd-mTQOfAYptQKrVXFm4axTPff0dswRZ9fl1Vd1rzMu8zqYK1MDClF7NpF7AeIy5azdpVHeyqu_zzncZrx95eRq73YDX0NIINvaxCT2dy-BSqfAAdQkOI</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Harari, Yuval</creator><creator>Pathak, Chandra Shakher</creator><creator>Edri, Eran</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4593-6489</orcidid></search><sort><creationdate>20230309</creationdate><title>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</title><author>Harari, Yuval ; Pathak, Chandra Shakher ; Edri, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>Atomic layer epitaxy</topic><topic>Conduction bands</topic><topic>Electrolytic cells</topic><topic>Electron transport</topic><topic>Embedding</topic><topic>Encapsulation</topic><topic>Insulation</topic><topic>Metal particles</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Silver</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harari, Yuval</creatorcontrib><creatorcontrib>Pathak, Chandra Shakher</creatorcontrib><creatorcontrib>Edri, Eran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harari, Yuval</au><au>Pathak, Chandra Shakher</au><au>Edri, Eran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-03-09</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>4951</spage><epage>4961</epage><pages>4951-4961</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Halide perovskite (HaP) solar cells have an excellent voltage efficiency (&gt;70%) and a low electron-affinity conduction band minimum, making them prospective candidates to be used as photocathodes in integrated low-cost solar fuel generators. However, halide perovskites are notoriously unstable in aqueous solutions and immediately dissolve upon exposure to water. Ultrathin layers (&lt;10 nm) of Al 2 O 3 deposited by atomic layer deposition are suitable encapsulants to prevent water ingression but are also electronically insulating. Embedding linear conjugated organic molecules ('molecular relays') that transverse the insulating layer enables selective electron transport across the insulating encapsulating layer. The electronic functionality of the embedded molecular relays is verified by conductive probe atomic force microscopy and photoelectrodeposition of metal particles (Pt and Ag) from ethanolic solutions. Lastly, the encapsulated HaP photoelectrodes were submersed in a CO 2 -saturated aqueous electrolyte and a photocurrent of ∼100 μA cm −2 (at ∼−0.32 V vs. Ag/AgCl) was measured, the highest reported for CsPbBr 3 based aqueous photoelectrodes. This work demonstrates a way for stabilizing perovskite semiconductors in polar and protonic electrolytes as photoelectrodes for the generation of solar fuels. Four nanometers of alumina is sufficient to prevent water ingression into a halide perovskite photoelectrode. Embedding 'molecular relays' that transverse the alumina enables photoelectrocatalysis in water.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36786205</pmid><doi>10.1039/d2nr06530d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4593-6489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-03, Vol.15 (1), p.4951-4961
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2784814336
source Royal Society of Chemistry
subjects Aluminum oxide
Aqueous electrolytes
Aqueous solutions
Atomic layer epitaxy
Conduction bands
Electrolytic cells
Electron transport
Embedding
Encapsulation
Insulation
Metal particles
Organic chemistry
Perovskites
Photocathodes
Photoelectric effect
Photovoltaic cells
Silver
Solar cells
title Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20relays%20in%20nanometer-scale%20alumina:%20effective%20encapsulation%20for%20water-submersed%20halide%20perovskite%20photocathodes&rft.jtitle=Nanoscale&rft.au=Harari,%20Yuval&rft.date=2023-03-09&rft.volume=15&rft.issue=1&rft.spage=4951&rft.epage=4961&rft.pages=4951-4961&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06530d&rft_dat=%3Cproquest_pubme%3E2784814336%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-baa223451a8793ede8788971025f87d64639af1f771c1e92cce53bd10608894b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784814336&rft_id=info:pmid/36786205&rfr_iscdi=true