Loading…
Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing
Electrochemical alongside the electro-catalytic properties of graphene and multi-walled carbon nanotubes have been improved via doping with manganese oxide nanostructures. Structural, morphological, and electrochemical properties of the as-synthesized nanocomposites were identified using XRD, FTIR,...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2023-03, Vol.34 (8), p.731, Article 731 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3 |
container_end_page | |
container_issue | 8 |
container_start_page | 731 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Ouda, Emtinan Yousf, Nehad Magar, Hend S. Hassan, Rabeay Y. A. Duraia, El-Shazly M. |
description | Electrochemical alongside the electro-catalytic properties of graphene and multi-walled carbon nanotubes have been improved via doping with manganese oxide nanostructures. Structural, morphological, and electrochemical properties of the as-synthesized nanocomposites were identified using XRD, FTIR, SEM, and electrochemical methods including cyclic voltammetry, and electrochemical impedance spectroscopy. The SEM images showed flower-like microsphere structures, while the conjugation of MnO
2
with the carbon nanomaterials was confirmed by the FTIR and XRD analysis. All MnO
2
-based nanocomposites provided great enhancement in their electrochemical activities with a larger value of specific capacitance than the individual constituents of carbon nanomaterials. Accordingly, hydrogen peroxide-directed detection was evaluated, whereas the nanocomposites exhibited direct electron transfer, fast and linear responses in the range from 1.0 to 210 µM. Thus, the significant enhancements in the electrochemical features acquired by the nanocomposites could suggest these nanomaterials for energy storage and hydrogen peroxide sensing applications. |
doi_str_mv | 10.1007/s10854-023-10107-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785000087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785000087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-N7tHKfUDlF568BayyWTdsk1qsj303xutIHjwNDC8zzvMg9A1JbeUEHWXKWmkqAjjFSWUqEqcoBmVileiYW-naEZaWZaSsXN0kfOGEFIL3szQuBzBTinad9gO1ox4l-IO0jRAxtHj17BiVWcyOGxN6mLAwYS4NROkwYwZ-5gwBEj9AecpJtMDNsFh-FOaIeQh9JfozBcKrn7mHK0fluvFU_Wyenxe3L9Ultd8qlppatsyaRvpDCNSeNPRrlZMWQWkFVQ6B445UUPdcahr6JzvROe9YYo5Pkc3x9ryy8ce8qQ3cZ9CuaiZamT5nTSqpNgxZVPMOYHXuzRsTTpoSvSXVH2UqotU_S1ViwLxI5RLOPSQfqv_oT4BZ2V8tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785000087</pqid></control><display><type>article</type><title>Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing</title><source>Springer Nature</source><creator>Ouda, Emtinan ; Yousf, Nehad ; Magar, Hend S. ; Hassan, Rabeay Y. A. ; Duraia, El-Shazly M.</creator><creatorcontrib>Ouda, Emtinan ; Yousf, Nehad ; Magar, Hend S. ; Hassan, Rabeay Y. A. ; Duraia, El-Shazly M.</creatorcontrib><description>Electrochemical alongside the electro-catalytic properties of graphene and multi-walled carbon nanotubes have been improved via doping with manganese oxide nanostructures. Structural, morphological, and electrochemical properties of the as-synthesized nanocomposites were identified using XRD, FTIR, SEM, and electrochemical methods including cyclic voltammetry, and electrochemical impedance spectroscopy. The SEM images showed flower-like microsphere structures, while the conjugation of MnO
2
with the carbon nanomaterials was confirmed by the FTIR and XRD analysis. All MnO
2
-based nanocomposites provided great enhancement in their electrochemical activities with a larger value of specific capacitance than the individual constituents of carbon nanomaterials. Accordingly, hydrogen peroxide-directed detection was evaluated, whereas the nanocomposites exhibited direct electron transfer, fast and linear responses in the range from 1.0 to 210 µM. Thus, the significant enhancements in the electrochemical features acquired by the nanocomposites could suggest these nanomaterials for energy storage and hydrogen peroxide sensing applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10107-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conjugation ; Efficiency ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; Electron transfer ; Energy storage ; Graphene ; Hydrogen peroxide ; Manganese dioxide ; Materials Science ; Metal oxides ; Morphology ; Multi wall carbon nanotubes ; Nanocomposites ; Nanomaterials ; Optical and Electronic Materials ; Potassium ; Science</subject><ispartof>Journal of materials science. Materials in electronics, 2023-03, Vol.34 (8), p.731, Article 731</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3</citedby><cites>FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3</cites><orcidid>0000-0003-4849-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ouda, Emtinan</creatorcontrib><creatorcontrib>Yousf, Nehad</creatorcontrib><creatorcontrib>Magar, Hend S.</creatorcontrib><creatorcontrib>Hassan, Rabeay Y. A.</creatorcontrib><creatorcontrib>Duraia, El-Shazly M.</creatorcontrib><title>Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Electrochemical alongside the electro-catalytic properties of graphene and multi-walled carbon nanotubes have been improved via doping with manganese oxide nanostructures. Structural, morphological, and electrochemical properties of the as-synthesized nanocomposites were identified using XRD, FTIR, SEM, and electrochemical methods including cyclic voltammetry, and electrochemical impedance spectroscopy. The SEM images showed flower-like microsphere structures, while the conjugation of MnO
2
with the carbon nanomaterials was confirmed by the FTIR and XRD analysis. All MnO
2
-based nanocomposites provided great enhancement in their electrochemical activities with a larger value of specific capacitance than the individual constituents of carbon nanomaterials. Accordingly, hydrogen peroxide-directed detection was evaluated, whereas the nanocomposites exhibited direct electron transfer, fast and linear responses in the range from 1.0 to 210 µM. Thus, the significant enhancements in the electrochemical features acquired by the nanocomposites could suggest these nanomaterials for energy storage and hydrogen peroxide sensing applications.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conjugation</subject><subject>Efficiency</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Optical and Electronic Materials</subject><subject>Potassium</subject><subject>Science</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-N7tHKfUDlF568BayyWTdsk1qsj303xutIHjwNDC8zzvMg9A1JbeUEHWXKWmkqAjjFSWUqEqcoBmVileiYW-naEZaWZaSsXN0kfOGEFIL3szQuBzBTinad9gO1ox4l-IO0jRAxtHj17BiVWcyOGxN6mLAwYS4NROkwYwZ-5gwBEj9AecpJtMDNsFh-FOaIeQh9JfozBcKrn7mHK0fluvFU_Wyenxe3L9Ultd8qlppatsyaRvpDCNSeNPRrlZMWQWkFVQ6B445UUPdcahr6JzvROe9YYo5Pkc3x9ryy8ce8qQ3cZ9CuaiZamT5nTSqpNgxZVPMOYHXuzRsTTpoSvSXVH2UqotU_S1ViwLxI5RLOPSQfqv_oT4BZ2V8tw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ouda, Emtinan</creator><creator>Yousf, Nehad</creator><creator>Magar, Hend S.</creator><creator>Hassan, Rabeay Y. A.</creator><creator>Duraia, El-Shazly M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4849-3222</orcidid></search><sort><creationdate>20230301</creationdate><title>Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing</title><author>Ouda, Emtinan ; Yousf, Nehad ; Magar, Hend S. ; Hassan, Rabeay Y. A. ; Duraia, El-Shazly M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conjugation</topic><topic>Efficiency</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Optical and Electronic Materials</topic><topic>Potassium</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouda, Emtinan</creatorcontrib><creatorcontrib>Yousf, Nehad</creatorcontrib><creatorcontrib>Magar, Hend S.</creatorcontrib><creatorcontrib>Hassan, Rabeay Y. A.</creatorcontrib><creatorcontrib>Duraia, El-Shazly M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouda, Emtinan</au><au>Yousf, Nehad</au><au>Magar, Hend S.</au><au>Hassan, Rabeay Y. A.</au><au>Duraia, El-Shazly M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>731</spage><pages>731-</pages><artnum>731</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Electrochemical alongside the electro-catalytic properties of graphene and multi-walled carbon nanotubes have been improved via doping with manganese oxide nanostructures. Structural, morphological, and electrochemical properties of the as-synthesized nanocomposites were identified using XRD, FTIR, SEM, and electrochemical methods including cyclic voltammetry, and electrochemical impedance spectroscopy. The SEM images showed flower-like microsphere structures, while the conjugation of MnO
2
with the carbon nanomaterials was confirmed by the FTIR and XRD analysis. All MnO
2
-based nanocomposites provided great enhancement in their electrochemical activities with a larger value of specific capacitance than the individual constituents of carbon nanomaterials. Accordingly, hydrogen peroxide-directed detection was evaluated, whereas the nanocomposites exhibited direct electron transfer, fast and linear responses in the range from 1.0 to 210 µM. Thus, the significant enhancements in the electrochemical features acquired by the nanocomposites could suggest these nanomaterials for energy storage and hydrogen peroxide sensing applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10107-4</doi><orcidid>https://orcid.org/0000-0003-4849-3222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-03, Vol.34 (8), p.731, Article 731 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2785000087 |
source | Springer Nature |
subjects | Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Conjugation Efficiency Electrochemical analysis Electrochemical impedance spectroscopy Electrodes Electrolytes Electron transfer Energy storage Graphene Hydrogen peroxide Manganese dioxide Materials Science Metal oxides Morphology Multi wall carbon nanotubes Nanocomposites Nanomaterials Optical and Electronic Materials Potassium Science |
title | Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20properties%20of%20MnO2-based%20carbon%20nanomaterials%20for%20energy%20storage%20and%20electrochemical%20sensing&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ouda,%20Emtinan&rft.date=2023-03-01&rft.volume=34&rft.issue=8&rft.spage=731&rft.pages=731-&rft.artnum=731&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10107-4&rft_dat=%3Cproquest_cross%3E2785000087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-95a6c925c85da2054fab1b6727c7e09415dded2d46e6b3e66ebdfb4bffa272d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785000087&rft_id=info:pmid/&rfr_iscdi=true |