Loading…
Transonic Dislocation Propagation in Diamond
The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Katagiri, Kento Pikuz, Tatiana Fang, Lichao Albertazzi, Bruno Egashira, Shunsuke Inubushi, Yuichi Kamimura, Genki Kodama, Ryosuke Koenig, Michel Kozioziemski, Bernard Masaoka, Gooru Miyanishi, Kohei Nakamura, Hirotaka Ota, Masato Rigon, Gabriel Sakawa, Youichi Sano, Takayoshi Schoofs, Frank Smith, Zoe J Sueda, Keiichi Togashi, Tadashi Vinci, Tommaso Yabashi, Makina Yabuuchi, Toshinori Dresselhaus-Marais, Leora E Ozaki, Norimasa |
description | The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2785001482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785001482</sourcerecordid><originalsourceid>FETCH-proquest_journals_27850014823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCSlKzCvOz8tMVnDJLM7JT04syczPUwgoyi9ITIewM_OAUom5-XkpPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuYWpgYGhiYWRMnCoAnFgxvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785001482</pqid></control><display><type>article</type><title>Transonic Dislocation Propagation in Diamond</title><source>Publicly Available Content Database</source><creator>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</creator><creatorcontrib>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</creatorcontrib><description>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal defects ; Crystal dislocations ; Diamonds ; Dislocation mobility ; Material properties ; Mechanical properties ; Single crystals ; Transverse waves ; Wave fronts ; X-ray radiography</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2785001482?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Katagiri, Kento</creatorcontrib><creatorcontrib>Pikuz, Tatiana</creatorcontrib><creatorcontrib>Fang, Lichao</creatorcontrib><creatorcontrib>Albertazzi, Bruno</creatorcontrib><creatorcontrib>Egashira, Shunsuke</creatorcontrib><creatorcontrib>Inubushi, Yuichi</creatorcontrib><creatorcontrib>Kamimura, Genki</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kozioziemski, Bernard</creatorcontrib><creatorcontrib>Masaoka, Gooru</creatorcontrib><creatorcontrib>Miyanishi, Kohei</creatorcontrib><creatorcontrib>Nakamura, Hirotaka</creatorcontrib><creatorcontrib>Ota, Masato</creatorcontrib><creatorcontrib>Rigon, Gabriel</creatorcontrib><creatorcontrib>Sakawa, Youichi</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Schoofs, Frank</creatorcontrib><creatorcontrib>Smith, Zoe J</creatorcontrib><creatorcontrib>Sueda, Keiichi</creatorcontrib><creatorcontrib>Togashi, Tadashi</creatorcontrib><creatorcontrib>Vinci, Tommaso</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Yabuuchi, Toshinori</creatorcontrib><creatorcontrib>Dresselhaus-Marais, Leora E</creatorcontrib><creatorcontrib>Ozaki, Norimasa</creatorcontrib><title>Transonic Dislocation Propagation in Diamond</title><title>arXiv.org</title><description>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</description><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Diamonds</subject><subject>Dislocation mobility</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Single crystals</subject><subject>Transverse waves</subject><subject>Wave fronts</subject><subject>X-ray radiography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCSlKzCvOz8tMVnDJLM7JT04syczPUwgoyi9ITIewM_OAUom5-XkpPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuYWpgYGhiYWRMnCoAnFgxvA</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Katagiri, Kento</creator><creator>Pikuz, Tatiana</creator><creator>Fang, Lichao</creator><creator>Albertazzi, Bruno</creator><creator>Egashira, Shunsuke</creator><creator>Inubushi, Yuichi</creator><creator>Kamimura, Genki</creator><creator>Kodama, Ryosuke</creator><creator>Koenig, Michel</creator><creator>Kozioziemski, Bernard</creator><creator>Masaoka, Gooru</creator><creator>Miyanishi, Kohei</creator><creator>Nakamura, Hirotaka</creator><creator>Ota, Masato</creator><creator>Rigon, Gabriel</creator><creator>Sakawa, Youichi</creator><creator>Sano, Takayoshi</creator><creator>Schoofs, Frank</creator><creator>Smith, Zoe J</creator><creator>Sueda, Keiichi</creator><creator>Togashi, Tadashi</creator><creator>Vinci, Tommaso</creator><creator>Yabashi, Makina</creator><creator>Yabuuchi, Toshinori</creator><creator>Dresselhaus-Marais, Leora E</creator><creator>Ozaki, Norimasa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230308</creationdate><title>Transonic Dislocation Propagation in Diamond</title><author>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27850014823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Diamonds</topic><topic>Dislocation mobility</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Single crystals</topic><topic>Transverse waves</topic><topic>Wave fronts</topic><topic>X-ray radiography</topic><toplevel>online_resources</toplevel><creatorcontrib>Katagiri, Kento</creatorcontrib><creatorcontrib>Pikuz, Tatiana</creatorcontrib><creatorcontrib>Fang, Lichao</creatorcontrib><creatorcontrib>Albertazzi, Bruno</creatorcontrib><creatorcontrib>Egashira, Shunsuke</creatorcontrib><creatorcontrib>Inubushi, Yuichi</creatorcontrib><creatorcontrib>Kamimura, Genki</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kozioziemski, Bernard</creatorcontrib><creatorcontrib>Masaoka, Gooru</creatorcontrib><creatorcontrib>Miyanishi, Kohei</creatorcontrib><creatorcontrib>Nakamura, Hirotaka</creatorcontrib><creatorcontrib>Ota, Masato</creatorcontrib><creatorcontrib>Rigon, Gabriel</creatorcontrib><creatorcontrib>Sakawa, Youichi</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Schoofs, Frank</creatorcontrib><creatorcontrib>Smith, Zoe J</creatorcontrib><creatorcontrib>Sueda, Keiichi</creatorcontrib><creatorcontrib>Togashi, Tadashi</creatorcontrib><creatorcontrib>Vinci, Tommaso</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Yabuuchi, Toshinori</creatorcontrib><creatorcontrib>Dresselhaus-Marais, Leora E</creatorcontrib><creatorcontrib>Ozaki, Norimasa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katagiri, Kento</au><au>Pikuz, Tatiana</au><au>Fang, Lichao</au><au>Albertazzi, Bruno</au><au>Egashira, Shunsuke</au><au>Inubushi, Yuichi</au><au>Kamimura, Genki</au><au>Kodama, Ryosuke</au><au>Koenig, Michel</au><au>Kozioziemski, Bernard</au><au>Masaoka, Gooru</au><au>Miyanishi, Kohei</au><au>Nakamura, Hirotaka</au><au>Ota, Masato</au><au>Rigon, Gabriel</au><au>Sakawa, Youichi</au><au>Sano, Takayoshi</au><au>Schoofs, Frank</au><au>Smith, Zoe J</au><au>Sueda, Keiichi</au><au>Togashi, Tadashi</au><au>Vinci, Tommaso</au><au>Yabashi, Makina</au><au>Yabuuchi, Toshinori</au><au>Dresselhaus-Marais, Leora E</au><au>Ozaki, Norimasa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transonic Dislocation Propagation in Diamond</atitle><jtitle>arXiv.org</jtitle><date>2023-03-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2785001482 |
source | Publicly Available Content Database |
subjects | Crystal defects Crystal dislocations Diamonds Dislocation mobility Material properties Mechanical properties Single crystals Transverse waves Wave fronts X-ray radiography |
title | Transonic Dislocation Propagation in Diamond |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transonic%20Dislocation%20Propagation%20in%20Diamond&rft.jtitle=arXiv.org&rft.au=Katagiri,%20Kento&rft.date=2023-03-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2785001482%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27850014823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785001482&rft_id=info:pmid/&rfr_iscdi=true |