Loading…

Transonic Dislocation Propagation in Diamond

The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Katagiri, Kento, Pikuz, Tatiana, Fang, Lichao, Albertazzi, Bruno, Egashira, Shunsuke, Inubushi, Yuichi, Kamimura, Genki, Kodama, Ryosuke, Koenig, Michel, Kozioziemski, Bernard, Masaoka, Gooru, Miyanishi, Kohei, Nakamura, Hirotaka, Ota, Masato, Rigon, Gabriel, Sakawa, Youichi, Sano, Takayoshi, Schoofs, Frank, Smith, Zoe J, Sueda, Keiichi, Togashi, Tadashi, Vinci, Tommaso, Yabashi, Makina, Yabuuchi, Toshinori, Dresselhaus-Marais, Leora E, Ozaki, Norimasa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Katagiri, Kento
Pikuz, Tatiana
Fang, Lichao
Albertazzi, Bruno
Egashira, Shunsuke
Inubushi, Yuichi
Kamimura, Genki
Kodama, Ryosuke
Koenig, Michel
Kozioziemski, Bernard
Masaoka, Gooru
Miyanishi, Kohei
Nakamura, Hirotaka
Ota, Masato
Rigon, Gabriel
Sakawa, Youichi
Sano, Takayoshi
Schoofs, Frank
Smith, Zoe J
Sueda, Keiichi
Togashi, Tadashi
Vinci, Tommaso
Yabashi, Makina
Yabuuchi, Toshinori
Dresselhaus-Marais, Leora E
Ozaki, Norimasa
description The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2785001482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785001482</sourcerecordid><originalsourceid>FETCH-proquest_journals_27850014823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCSlKzCvOz8tMVnDJLM7JT04syczPUwgoyi9ITIewM_OAUom5-XkpPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuYWpgYGhiYWRMnCoAnFgxvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785001482</pqid></control><display><type>article</type><title>Transonic Dislocation Propagation in Diamond</title><source>Publicly Available Content Database</source><creator>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</creator><creatorcontrib>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</creatorcontrib><description>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal defects ; Crystal dislocations ; Diamonds ; Dislocation mobility ; Material properties ; Mechanical properties ; Single crystals ; Transverse waves ; Wave fronts ; X-ray radiography</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2785001482?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Katagiri, Kento</creatorcontrib><creatorcontrib>Pikuz, Tatiana</creatorcontrib><creatorcontrib>Fang, Lichao</creatorcontrib><creatorcontrib>Albertazzi, Bruno</creatorcontrib><creatorcontrib>Egashira, Shunsuke</creatorcontrib><creatorcontrib>Inubushi, Yuichi</creatorcontrib><creatorcontrib>Kamimura, Genki</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kozioziemski, Bernard</creatorcontrib><creatorcontrib>Masaoka, Gooru</creatorcontrib><creatorcontrib>Miyanishi, Kohei</creatorcontrib><creatorcontrib>Nakamura, Hirotaka</creatorcontrib><creatorcontrib>Ota, Masato</creatorcontrib><creatorcontrib>Rigon, Gabriel</creatorcontrib><creatorcontrib>Sakawa, Youichi</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Schoofs, Frank</creatorcontrib><creatorcontrib>Smith, Zoe J</creatorcontrib><creatorcontrib>Sueda, Keiichi</creatorcontrib><creatorcontrib>Togashi, Tadashi</creatorcontrib><creatorcontrib>Vinci, Tommaso</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Yabuuchi, Toshinori</creatorcontrib><creatorcontrib>Dresselhaus-Marais, Leora E</creatorcontrib><creatorcontrib>Ozaki, Norimasa</creatorcontrib><title>Transonic Dislocation Propagation in Diamond</title><title>arXiv.org</title><description>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</description><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Diamonds</subject><subject>Dislocation mobility</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Single crystals</subject><subject>Transverse waves</subject><subject>Wave fronts</subject><subject>X-ray radiography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCSlKzCvOz8tMVnDJLM7JT04syczPUwgoyi9ITIewM_OAUom5-XkpPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RuYWpgYGhiYWRMnCoAnFgxvA</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Katagiri, Kento</creator><creator>Pikuz, Tatiana</creator><creator>Fang, Lichao</creator><creator>Albertazzi, Bruno</creator><creator>Egashira, Shunsuke</creator><creator>Inubushi, Yuichi</creator><creator>Kamimura, Genki</creator><creator>Kodama, Ryosuke</creator><creator>Koenig, Michel</creator><creator>Kozioziemski, Bernard</creator><creator>Masaoka, Gooru</creator><creator>Miyanishi, Kohei</creator><creator>Nakamura, Hirotaka</creator><creator>Ota, Masato</creator><creator>Rigon, Gabriel</creator><creator>Sakawa, Youichi</creator><creator>Sano, Takayoshi</creator><creator>Schoofs, Frank</creator><creator>Smith, Zoe J</creator><creator>Sueda, Keiichi</creator><creator>Togashi, Tadashi</creator><creator>Vinci, Tommaso</creator><creator>Yabashi, Makina</creator><creator>Yabuuchi, Toshinori</creator><creator>Dresselhaus-Marais, Leora E</creator><creator>Ozaki, Norimasa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230308</creationdate><title>Transonic Dislocation Propagation in Diamond</title><author>Katagiri, Kento ; Pikuz, Tatiana ; Fang, Lichao ; Albertazzi, Bruno ; Egashira, Shunsuke ; Inubushi, Yuichi ; Kamimura, Genki ; Kodama, Ryosuke ; Koenig, Michel ; Kozioziemski, Bernard ; Masaoka, Gooru ; Miyanishi, Kohei ; Nakamura, Hirotaka ; Ota, Masato ; Rigon, Gabriel ; Sakawa, Youichi ; Sano, Takayoshi ; Schoofs, Frank ; Smith, Zoe J ; Sueda, Keiichi ; Togashi, Tadashi ; Vinci, Tommaso ; Yabashi, Makina ; Yabuuchi, Toshinori ; Dresselhaus-Marais, Leora E ; Ozaki, Norimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27850014823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Diamonds</topic><topic>Dislocation mobility</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Single crystals</topic><topic>Transverse waves</topic><topic>Wave fronts</topic><topic>X-ray radiography</topic><toplevel>online_resources</toplevel><creatorcontrib>Katagiri, Kento</creatorcontrib><creatorcontrib>Pikuz, Tatiana</creatorcontrib><creatorcontrib>Fang, Lichao</creatorcontrib><creatorcontrib>Albertazzi, Bruno</creatorcontrib><creatorcontrib>Egashira, Shunsuke</creatorcontrib><creatorcontrib>Inubushi, Yuichi</creatorcontrib><creatorcontrib>Kamimura, Genki</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kozioziemski, Bernard</creatorcontrib><creatorcontrib>Masaoka, Gooru</creatorcontrib><creatorcontrib>Miyanishi, Kohei</creatorcontrib><creatorcontrib>Nakamura, Hirotaka</creatorcontrib><creatorcontrib>Ota, Masato</creatorcontrib><creatorcontrib>Rigon, Gabriel</creatorcontrib><creatorcontrib>Sakawa, Youichi</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Schoofs, Frank</creatorcontrib><creatorcontrib>Smith, Zoe J</creatorcontrib><creatorcontrib>Sueda, Keiichi</creatorcontrib><creatorcontrib>Togashi, Tadashi</creatorcontrib><creatorcontrib>Vinci, Tommaso</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Yabuuchi, Toshinori</creatorcontrib><creatorcontrib>Dresselhaus-Marais, Leora E</creatorcontrib><creatorcontrib>Ozaki, Norimasa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katagiri, Kento</au><au>Pikuz, Tatiana</au><au>Fang, Lichao</au><au>Albertazzi, Bruno</au><au>Egashira, Shunsuke</au><au>Inubushi, Yuichi</au><au>Kamimura, Genki</au><au>Kodama, Ryosuke</au><au>Koenig, Michel</au><au>Kozioziemski, Bernard</au><au>Masaoka, Gooru</au><au>Miyanishi, Kohei</au><au>Nakamura, Hirotaka</au><au>Ota, Masato</au><au>Rigon, Gabriel</au><au>Sakawa, Youichi</au><au>Sano, Takayoshi</au><au>Schoofs, Frank</au><au>Smith, Zoe J</au><au>Sueda, Keiichi</au><au>Togashi, Tadashi</au><au>Vinci, Tommaso</au><au>Yabashi, Makina</au><au>Yabuuchi, Toshinori</au><au>Dresselhaus-Marais, Leora E</au><au>Ozaki, Norimasa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transonic Dislocation Propagation in Diamond</atitle><jtitle>arXiv.org</jtitle><date>2023-03-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The motion of line defects (dislocations), the primary driver of plasticity, has been studied for almost a century but one of the most fundamental questions remains unsolved: what defines the maximum speed at which dislocations can propagate? Early interpretations based on elasticity theory suggest that dislocation motion should not exceed the transverse wave speed, but recent models and atomistic simulations predict that transverse wave speed is a forbidden speed but not the upper limit. We use femtosecond x-ray radiography to observe how dislocations in shock-compressed single-crystalline diamond travel with the plastic shock wavefront. The observed dislocation motions in the diamond show that dislocations can move faster than the transverse wave speed. As the ultrafast motion of dislocations causes unique behavior by which solids strengthen or fail, understanding the upper limit of dislocation mobility is critical to accurately model, predict, and control the mechanical properties of materials under extreme conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2785001482
source Publicly Available Content Database
subjects Crystal defects
Crystal dislocations
Diamonds
Dislocation mobility
Material properties
Mechanical properties
Single crystals
Transverse waves
Wave fronts
X-ray radiography
title Transonic Dislocation Propagation in Diamond
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transonic%20Dislocation%20Propagation%20in%20Diamond&rft.jtitle=arXiv.org&rft.au=Katagiri,%20Kento&rft.date=2023-03-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2785001482%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27850014823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785001482&rft_id=info:pmid/&rfr_iscdi=true