Loading…

Active fault detection and isolation in linear time‐invariant systems: A geometric approach

In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis method...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2023-03, Vol.25 (2), p.710-721
Main Authors: Flores‐León, Héctor, Begovich, Ofelia, Ruiz‐León, Javier, Ramírez‐Treviño, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3
cites cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3
container_end_page 721
container_issue 2
container_start_page 710
container_title Asian journal of control
container_volume 25
creator Flores‐León, Héctor
Begovich, Ofelia
Ruiz‐León, Javier
Ramírez‐Treviño, Antonio
description In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and (A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.
doi_str_mv 10.1002/asjc.2854
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785170088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785170088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuJ47KLKn5ViQXdIstxxuAqP8V2i7LjCJyRk-C2bFnNPM0380YPoUtKJpQQNlV-pSdM5NkRGtFZmiWczNLj2OecJoKz_BSdeb8ihNNU5CP0Wupgt4CN2jQB1xAg6r7Dqqux9X2j9sp2uLEdKIeDbeHn69t2W-Ws6gL2gw_Q-htc4jfoWwjOaqzWa9cr_X6OToxqPFz81TFa3t0u5w_J4vn-cV4uEs1YEX80hWZFxTiwWVaxihqtuBaQZnVW1IIAIQYo5VWeZrwSRlVxXBFDijo1BtIxujqcja4fG_BBrvqN66KjZIXIaUGIEJG6PlDa9d47MHLtbKvcICmRu_DkLjy5Cy-y0wP7aRsY_gdl-fI032_8Ar6Gc74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785170088</pqid></control><display><type>article</type><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><source>Wiley</source><creator>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</creator><creatorcontrib>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</creatorcontrib><description>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and (A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>active fault diagnosis ; Fault detection ; fault isolation ; Faults ; geometric analysis ; Invariants ; Optimization ; Polynomials ; residual generation ; State feedback ; state feedback law ; Subspaces ; unobservability subspaces</subject><ispartof>Asian journal of control, 2023-03, Vol.25 (2), p.710-721</ispartof><rights>2022 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2023 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</citedby><cites>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</cites><orcidid>0000-0002-0099-8822 ; 0000-0001-8076-4008 ; 0000-0003-3028-3446 ; 0000-0001-6906-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Flores‐León, Héctor</creatorcontrib><creatorcontrib>Begovich, Ofelia</creatorcontrib><creatorcontrib>Ruiz‐León, Javier</creatorcontrib><creatorcontrib>Ramírez‐Treviño, Antonio</creatorcontrib><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><title>Asian journal of control</title><description>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and (A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</description><subject>active fault diagnosis</subject><subject>Fault detection</subject><subject>fault isolation</subject><subject>Faults</subject><subject>geometric analysis</subject><subject>Invariants</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>residual generation</subject><subject>State feedback</subject><subject>state feedback law</subject><subject>Subspaces</subject><subject>unobservability subspaces</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuJ47KLKn5ViQXdIstxxuAqP8V2i7LjCJyRk-C2bFnNPM0380YPoUtKJpQQNlV-pSdM5NkRGtFZmiWczNLj2OecJoKz_BSdeb8ihNNU5CP0Wupgt4CN2jQB1xAg6r7Dqqux9X2j9sp2uLEdKIeDbeHn69t2W-Ws6gL2gw_Q-htc4jfoWwjOaqzWa9cr_X6OToxqPFz81TFa3t0u5w_J4vn-cV4uEs1YEX80hWZFxTiwWVaxihqtuBaQZnVW1IIAIQYo5VWeZrwSRlVxXBFDijo1BtIxujqcja4fG_BBrvqN66KjZIXIaUGIEJG6PlDa9d47MHLtbKvcICmRu_DkLjy5Cy-y0wP7aRsY_gdl-fI032_8Ar6Gc74</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Flores‐León, Héctor</creator><creator>Begovich, Ofelia</creator><creator>Ruiz‐León, Javier</creator><creator>Ramírez‐Treviño, Antonio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0001-8076-4008</orcidid><orcidid>https://orcid.org/0000-0003-3028-3446</orcidid><orcidid>https://orcid.org/0000-0001-6906-3833</orcidid></search><sort><creationdate>202303</creationdate><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><author>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>active fault diagnosis</topic><topic>Fault detection</topic><topic>fault isolation</topic><topic>Faults</topic><topic>geometric analysis</topic><topic>Invariants</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>residual generation</topic><topic>State feedback</topic><topic>state feedback law</topic><topic>Subspaces</topic><topic>unobservability subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores‐León, Héctor</creatorcontrib><creatorcontrib>Begovich, Ofelia</creatorcontrib><creatorcontrib>Ruiz‐León, Javier</creatorcontrib><creatorcontrib>Ramírez‐Treviño, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores‐León, Héctor</au><au>Begovich, Ofelia</au><au>Ruiz‐León, Javier</au><au>Ramírez‐Treviño, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</atitle><jtitle>Asian journal of control</jtitle><date>2023-03</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>710</spage><epage>721</epage><pages>710-721</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and (A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2854</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0001-8076-4008</orcidid><orcidid>https://orcid.org/0000-0003-3028-3446</orcidid><orcidid>https://orcid.org/0000-0001-6906-3833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2023-03, Vol.25 (2), p.710-721
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2785170088
source Wiley
subjects active fault diagnosis
Fault detection
fault isolation
Faults
geometric analysis
Invariants
Optimization
Polynomials
residual generation
State feedback
state feedback law
Subspaces
unobservability subspaces
title Active fault detection and isolation in linear time‐invariant systems: A geometric approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20fault%20detection%20and%20isolation%20in%20linear%20time%E2%80%90invariant%20systems:%20A%20geometric%20approach&rft.jtitle=Asian%20journal%20of%20control&rft.au=Flores%E2%80%90Le%C3%B3n,%20H%C3%A9ctor&rft.date=2023-03&rft.volume=25&rft.issue=2&rft.spage=710&rft.epage=721&rft.pages=710-721&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2854&rft_dat=%3Cproquest_cross%3E2785170088%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785170088&rft_id=info:pmid/&rfr_iscdi=true