Loading…
Active fault detection and isolation in linear time‐invariant systems: A geometric approach
In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis method...
Saved in:
Published in: | Asian journal of control 2023-03, Vol.25 (2), p.710-721 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3 |
container_end_page | 721 |
container_issue | 2 |
container_start_page | 710 |
container_title | Asian journal of control |
container_volume | 25 |
creator | Flores‐León, Héctor Begovich, Ofelia Ruiz‐León, Javier Ramírez‐Treviño, Antonio |
description | In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and
(A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named
Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of
Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach. |
doi_str_mv | 10.1002/asjc.2854 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785170088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785170088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuJ47KLKn5ViQXdIstxxuAqP8V2i7LjCJyRk-C2bFnNPM0380YPoUtKJpQQNlV-pSdM5NkRGtFZmiWczNLj2OecJoKz_BSdeb8ihNNU5CP0Wupgt4CN2jQB1xAg6r7Dqqux9X2j9sp2uLEdKIeDbeHn69t2W-Ws6gL2gw_Q-htc4jfoWwjOaqzWa9cr_X6OToxqPFz81TFa3t0u5w_J4vn-cV4uEs1YEX80hWZFxTiwWVaxihqtuBaQZnVW1IIAIQYo5VWeZrwSRlVxXBFDijo1BtIxujqcja4fG_BBrvqN66KjZIXIaUGIEJG6PlDa9d47MHLtbKvcICmRu_DkLjy5Cy-y0wP7aRsY_gdl-fI032_8Ar6Gc74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785170088</pqid></control><display><type>article</type><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><source>Wiley</source><creator>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</creator><creatorcontrib>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</creatorcontrib><description>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and
(A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named
Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of
Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>active fault diagnosis ; Fault detection ; fault isolation ; Faults ; geometric analysis ; Invariants ; Optimization ; Polynomials ; residual generation ; State feedback ; state feedback law ; Subspaces ; unobservability subspaces</subject><ispartof>Asian journal of control, 2023-03, Vol.25 (2), p.710-721</ispartof><rights>2022 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><rights>2023 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</citedby><cites>FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</cites><orcidid>0000-0002-0099-8822 ; 0000-0001-8076-4008 ; 0000-0003-3028-3446 ; 0000-0001-6906-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Flores‐León, Héctor</creatorcontrib><creatorcontrib>Begovich, Ofelia</creatorcontrib><creatorcontrib>Ruiz‐León, Javier</creatorcontrib><creatorcontrib>Ramírez‐Treviño, Antonio</creatorcontrib><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><title>Asian journal of control</title><description>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and
(A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named
Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of
Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</description><subject>active fault diagnosis</subject><subject>Fault detection</subject><subject>fault isolation</subject><subject>Faults</subject><subject>geometric analysis</subject><subject>Invariants</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>residual generation</subject><subject>State feedback</subject><subject>state feedback law</subject><subject>Subspaces</subject><subject>unobservability subspaces</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuJ47KLKn5ViQXdIstxxuAqP8V2i7LjCJyRk-C2bFnNPM0380YPoUtKJpQQNlV-pSdM5NkRGtFZmiWczNLj2OecJoKz_BSdeb8ihNNU5CP0Wupgt4CN2jQB1xAg6r7Dqqux9X2j9sp2uLEdKIeDbeHn69t2W-Ws6gL2gw_Q-htc4jfoWwjOaqzWa9cr_X6OToxqPFz81TFa3t0u5w_J4vn-cV4uEs1YEX80hWZFxTiwWVaxihqtuBaQZnVW1IIAIQYo5VWeZrwSRlVxXBFDijo1BtIxujqcja4fG_BBrvqN66KjZIXIaUGIEJG6PlDa9d47MHLtbKvcICmRu_DkLjy5Cy-y0wP7aRsY_gdl-fI032_8Ar6Gc74</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Flores‐León, Héctor</creator><creator>Begovich, Ofelia</creator><creator>Ruiz‐León, Javier</creator><creator>Ramírez‐Treviño, Antonio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0001-8076-4008</orcidid><orcidid>https://orcid.org/0000-0003-3028-3446</orcidid><orcidid>https://orcid.org/0000-0001-6906-3833</orcidid></search><sort><creationdate>202303</creationdate><title>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</title><author>Flores‐León, Héctor ; Begovich, Ofelia ; Ruiz‐León, Javier ; Ramírez‐Treviño, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>active fault diagnosis</topic><topic>Fault detection</topic><topic>fault isolation</topic><topic>Faults</topic><topic>geometric analysis</topic><topic>Invariants</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>residual generation</topic><topic>State feedback</topic><topic>state feedback law</topic><topic>Subspaces</topic><topic>unobservability subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores‐León, Héctor</creatorcontrib><creatorcontrib>Begovich, Ofelia</creatorcontrib><creatorcontrib>Ruiz‐León, Javier</creatorcontrib><creatorcontrib>Ramírez‐Treviño, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores‐León, Héctor</au><au>Begovich, Ofelia</au><au>Ruiz‐León, Javier</au><au>Ramírez‐Treviño, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active fault detection and isolation in linear time‐invariant systems: A geometric approach</atitle><jtitle>Asian journal of control</jtitle><date>2023-03</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>710</spage><epage>721</epage><pages>710-721</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this work, a novel approach on active fault detection and isolation for linear time‐invariant systems, named forced diagnosability, is proposed. This approach computes a continuous state feedback law to render a fault diagnosable, even when it cannot be diagnosed by using passive diagnosis methods. To do that, this work derives novel geometric relationships between unobservability and
(A,B)$$ \left(A,B\right) $$‐invariant subspaces that, under certain conditions, guarantee the existence of such state feedback law. The objective of the state feedback law is to force all the faults, except the one required to be diagnosed, named
Ld$$ {L}_d $$, to reside in an unobservability subspace. This effectively decouples the effect of
Ld$$ {L}_d $$ on the system output, from the effect of the other faults, allowing the design of a residual generator to detect and isolate the desired fault. The proposed state feedback law continuously forces diagnosability, and it can be computed in polynomial time. This avoids testing faults only at fixed time intervals and solving complex optimization problems required in other active diagnosis approaches. A numerical example is presented to illustrate the efficiency of the proposed approach.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2854</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0001-8076-4008</orcidid><orcidid>https://orcid.org/0000-0003-3028-3446</orcidid><orcidid>https://orcid.org/0000-0001-6906-3833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2023-03, Vol.25 (2), p.710-721 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2785170088 |
source | Wiley |
subjects | active fault diagnosis Fault detection fault isolation Faults geometric analysis Invariants Optimization Polynomials residual generation State feedback state feedback law Subspaces unobservability subspaces |
title | Active fault detection and isolation in linear time‐invariant systems: A geometric approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20fault%20detection%20and%20isolation%20in%20linear%20time%E2%80%90invariant%20systems:%20A%20geometric%20approach&rft.jtitle=Asian%20journal%20of%20control&rft.au=Flores%E2%80%90Le%C3%B3n,%20H%C3%A9ctor&rft.date=2023-03&rft.volume=25&rft.issue=2&rft.spage=710&rft.epage=721&rft.pages=710-721&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2854&rft_dat=%3Cproquest_cross%3E2785170088%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2274-6f7c27b26e294b2b1fca6c8e34d47d80e00fe116b5346b8faba6cb0f07d3ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785170088&rft_id=info:pmid/&rfr_iscdi=true |