Loading…
Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques
Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd preve...
Saved in:
Published in: | Electronics (Basel) 2023-03, Vol.12 (5), p.1119 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1119 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Prasanth, Bathala Paul, Rinika Kaliyaperumal, Deepa Kannan, Ramani Venkata Pavan Kumar, Yellapragada Kalyan Chakravarthi, Maddikera Venkatesan, Nithya |
description | Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction. |
doi_str_mv | 10.3390/electronics12051119 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785186566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741740101</galeid><sourcerecordid>A741740101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</originalsourceid><addsrcrecordid>eNptkcFOwzAMhiMEEtPYE3CpxLkjadq0OY5pMKRNSGjjWrmpu2Z06Ug6xHh60o0DB-yDrc-__R9MyC2jY84lvccGVWdbo5VjEU0YY_KCDCKaylBGMrr801-TkXNb6kMynnE6IPUSvvROf2uzCV5xgwYtdPoTgwcL7z2cebI5BnOwBp3riTbB7GSpVfCGtVYNumB9Gi1B1dpgsEAv78EKVW30xwHdDbmqoHE4-q1Dsn6crabzcPHy9DydLELFBetClKpIZVFGSRlFMuYpj8uYsiROFC8EVABSISJISlkqQMlSFAlTEIsMKQfgQ3J3vru3be_b5dv2YI23zKM0S1gmEiG8anxWbaDBXJuq7SwonyXutGoNVtrzSRqz1LtT5hf4eUHZ1jmLVb63egf2mDOa92_I_3kD_wEDC382</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785186566</pqid></control><display><type>article</type><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</creator><creatorcontrib>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</creatorcontrib><description>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12051119</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automobile driving ; Automobiles, Electric ; Batteries ; Braking ; Braking systems ; Control algorithms ; Deceleration ; Efficiency ; Electric vehicles ; Energy ; Energy storage ; Energy use ; Fuzzy logic ; Kinetic energy ; Machine learning ; Methods ; Neural networks ; Regenerative braking ; State of charge</subject><ispartof>Electronics (Basel), 2023-03, Vol.12 (5), p.1119</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</citedby><cites>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</cites><orcidid>0000-0001-9913-8867 ; 0000-0002-9048-5157 ; 0000-0001-5672-7055 ; 0000-0002-9111-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785186566/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785186566?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Prasanth, Bathala</creatorcontrib><creatorcontrib>Paul, Rinika</creatorcontrib><creatorcontrib>Kaliyaperumal, Deepa</creatorcontrib><creatorcontrib>Kannan, Ramani</creatorcontrib><creatorcontrib>Venkata Pavan Kumar, Yellapragada</creatorcontrib><creatorcontrib>Kalyan Chakravarthi, Maddikera</creatorcontrib><creatorcontrib>Venkatesan, Nithya</creatorcontrib><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><title>Electronics (Basel)</title><description>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automobile driving</subject><subject>Automobiles, Electric</subject><subject>Batteries</subject><subject>Braking</subject><subject>Braking systems</subject><subject>Control algorithms</subject><subject>Deceleration</subject><subject>Efficiency</subject><subject>Electric vehicles</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy use</subject><subject>Fuzzy logic</subject><subject>Kinetic energy</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Regenerative braking</subject><subject>State of charge</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkcFOwzAMhiMEEtPYE3CpxLkjadq0OY5pMKRNSGjjWrmpu2Z06Ug6xHh60o0DB-yDrc-__R9MyC2jY84lvccGVWdbo5VjEU0YY_KCDCKaylBGMrr801-TkXNb6kMynnE6IPUSvvROf2uzCV5xgwYtdPoTgwcL7z2cebI5BnOwBp3riTbB7GSpVfCGtVYNumB9Gi1B1dpgsEAv78EKVW30xwHdDbmqoHE4-q1Dsn6crabzcPHy9DydLELFBetClKpIZVFGSRlFMuYpj8uYsiROFC8EVABSISJISlkqQMlSFAlTEIsMKQfgQ3J3vru3be_b5dv2YI23zKM0S1gmEiG8anxWbaDBXJuq7SwonyXutGoNVtrzSRqz1LtT5hf4eUHZ1jmLVb63egf2mDOa92_I_3kD_wEDC382</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Prasanth, Bathala</creator><creator>Paul, Rinika</creator><creator>Kaliyaperumal, Deepa</creator><creator>Kannan, Ramani</creator><creator>Venkata Pavan Kumar, Yellapragada</creator><creator>Kalyan Chakravarthi, Maddikera</creator><creator>Venkatesan, Nithya</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9913-8867</orcidid><orcidid>https://orcid.org/0000-0002-9048-5157</orcidid><orcidid>https://orcid.org/0000-0001-5672-7055</orcidid><orcidid>https://orcid.org/0000-0002-9111-6927</orcidid></search><sort><creationdate>20230301</creationdate><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><author>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automobile driving</topic><topic>Automobiles, Electric</topic><topic>Batteries</topic><topic>Braking</topic><topic>Braking systems</topic><topic>Control algorithms</topic><topic>Deceleration</topic><topic>Efficiency</topic><topic>Electric vehicles</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy use</topic><topic>Fuzzy logic</topic><topic>Kinetic energy</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Regenerative braking</topic><topic>State of charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanth, Bathala</creatorcontrib><creatorcontrib>Paul, Rinika</creatorcontrib><creatorcontrib>Kaliyaperumal, Deepa</creatorcontrib><creatorcontrib>Kannan, Ramani</creatorcontrib><creatorcontrib>Venkata Pavan Kumar, Yellapragada</creatorcontrib><creatorcontrib>Kalyan Chakravarthi, Maddikera</creatorcontrib><creatorcontrib>Venkatesan, Nithya</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanth, Bathala</au><au>Paul, Rinika</au><au>Kaliyaperumal, Deepa</au><au>Kannan, Ramani</au><au>Venkata Pavan Kumar, Yellapragada</au><au>Kalyan Chakravarthi, Maddikera</au><au>Venkatesan, Nithya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>5</issue><spage>1119</spage><pages>1119-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12051119</doi><orcidid>https://orcid.org/0000-0001-9913-8867</orcidid><orcidid>https://orcid.org/0000-0002-9048-5157</orcidid><orcidid>https://orcid.org/0000-0001-5672-7055</orcidid><orcidid>https://orcid.org/0000-0002-9111-6927</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-03, Vol.12 (5), p.1119 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2785186566 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Artificial intelligence Artificial neural networks Automobile driving Automobiles, Electric Batteries Braking Braking systems Control algorithms Deceleration Efficiency Electric vehicles Energy Energy storage Energy use Fuzzy logic Kinetic energy Machine learning Methods Neural networks Regenerative braking State of charge |
title | Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Regenerative%20Braking%20Energy%20Harnessing%20in%20Electric%20Vehicles%20Using%20Machine%20Learning%20Techniques&rft.jtitle=Electronics%20(Basel)&rft.au=Prasanth,%20Bathala&rft.date=2023-03-01&rft.volume=12&rft.issue=5&rft.spage=1119&rft.pages=1119-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12051119&rft_dat=%3Cgale_proqu%3EA741740101%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785186566&rft_id=info:pmid/&rft_galeid=A741740101&rfr_iscdi=true |