Loading…

Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques

Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd preve...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-03, Vol.12 (5), p.1119
Main Authors: Prasanth, Bathala, Paul, Rinika, Kaliyaperumal, Deepa, Kannan, Ramani, Venkata Pavan Kumar, Yellapragada, Kalyan Chakravarthi, Maddikera, Venkatesan, Nithya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3
cites cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3
container_end_page
container_issue 5
container_start_page 1119
container_title Electronics (Basel)
container_volume 12
creator Prasanth, Bathala
Paul, Rinika
Kaliyaperumal, Deepa
Kannan, Ramani
Venkata Pavan Kumar, Yellapragada
Kalyan Chakravarthi, Maddikera
Venkatesan, Nithya
description Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.
doi_str_mv 10.3390/electronics12051119
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785186566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741740101</galeid><sourcerecordid>A741740101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</originalsourceid><addsrcrecordid>eNptkcFOwzAMhiMEEtPYE3CpxLkjadq0OY5pMKRNSGjjWrmpu2Z06Ug6xHh60o0DB-yDrc-__R9MyC2jY84lvccGVWdbo5VjEU0YY_KCDCKaylBGMrr801-TkXNb6kMynnE6IPUSvvROf2uzCV5xgwYtdPoTgwcL7z2cebI5BnOwBp3riTbB7GSpVfCGtVYNumB9Gi1B1dpgsEAv78EKVW30xwHdDbmqoHE4-q1Dsn6crabzcPHy9DydLELFBetClKpIZVFGSRlFMuYpj8uYsiROFC8EVABSISJISlkqQMlSFAlTEIsMKQfgQ3J3vru3be_b5dv2YI23zKM0S1gmEiG8anxWbaDBXJuq7SwonyXutGoNVtrzSRqz1LtT5hf4eUHZ1jmLVb63egf2mDOa92_I_3kD_wEDC382</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785186566</pqid></control><display><type>article</type><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</creator><creatorcontrib>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</creatorcontrib><description>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12051119</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automobile driving ; Automobiles, Electric ; Batteries ; Braking ; Braking systems ; Control algorithms ; Deceleration ; Efficiency ; Electric vehicles ; Energy ; Energy storage ; Energy use ; Fuzzy logic ; Kinetic energy ; Machine learning ; Methods ; Neural networks ; Regenerative braking ; State of charge</subject><ispartof>Electronics (Basel), 2023-03, Vol.12 (5), p.1119</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</citedby><cites>FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</cites><orcidid>0000-0001-9913-8867 ; 0000-0002-9048-5157 ; 0000-0001-5672-7055 ; 0000-0002-9111-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785186566/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785186566?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Prasanth, Bathala</creatorcontrib><creatorcontrib>Paul, Rinika</creatorcontrib><creatorcontrib>Kaliyaperumal, Deepa</creatorcontrib><creatorcontrib>Kannan, Ramani</creatorcontrib><creatorcontrib>Venkata Pavan Kumar, Yellapragada</creatorcontrib><creatorcontrib>Kalyan Chakravarthi, Maddikera</creatorcontrib><creatorcontrib>Venkatesan, Nithya</creatorcontrib><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><title>Electronics (Basel)</title><description>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automobile driving</subject><subject>Automobiles, Electric</subject><subject>Batteries</subject><subject>Braking</subject><subject>Braking systems</subject><subject>Control algorithms</subject><subject>Deceleration</subject><subject>Efficiency</subject><subject>Electric vehicles</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy use</subject><subject>Fuzzy logic</subject><subject>Kinetic energy</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Regenerative braking</subject><subject>State of charge</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkcFOwzAMhiMEEtPYE3CpxLkjadq0OY5pMKRNSGjjWrmpu2Z06Ug6xHh60o0DB-yDrc-__R9MyC2jY84lvccGVWdbo5VjEU0YY_KCDCKaylBGMrr801-TkXNb6kMynnE6IPUSvvROf2uzCV5xgwYtdPoTgwcL7z2cebI5BnOwBp3riTbB7GSpVfCGtVYNumB9Gi1B1dpgsEAv78EKVW30xwHdDbmqoHE4-q1Dsn6crabzcPHy9DydLELFBetClKpIZVFGSRlFMuYpj8uYsiROFC8EVABSISJISlkqQMlSFAlTEIsMKQfgQ3J3vru3be_b5dv2YI23zKM0S1gmEiG8anxWbaDBXJuq7SwonyXutGoNVtrzSRqz1LtT5hf4eUHZ1jmLVb63egf2mDOa92_I_3kD_wEDC382</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Prasanth, Bathala</creator><creator>Paul, Rinika</creator><creator>Kaliyaperumal, Deepa</creator><creator>Kannan, Ramani</creator><creator>Venkata Pavan Kumar, Yellapragada</creator><creator>Kalyan Chakravarthi, Maddikera</creator><creator>Venkatesan, Nithya</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9913-8867</orcidid><orcidid>https://orcid.org/0000-0002-9048-5157</orcidid><orcidid>https://orcid.org/0000-0001-5672-7055</orcidid><orcidid>https://orcid.org/0000-0002-9111-6927</orcidid></search><sort><creationdate>20230301</creationdate><title>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</title><author>Prasanth, Bathala ; Paul, Rinika ; Kaliyaperumal, Deepa ; Kannan, Ramani ; Venkata Pavan Kumar, Yellapragada ; Kalyan Chakravarthi, Maddikera ; Venkatesan, Nithya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automobile driving</topic><topic>Automobiles, Electric</topic><topic>Batteries</topic><topic>Braking</topic><topic>Braking systems</topic><topic>Control algorithms</topic><topic>Deceleration</topic><topic>Efficiency</topic><topic>Electric vehicles</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy use</topic><topic>Fuzzy logic</topic><topic>Kinetic energy</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Regenerative braking</topic><topic>State of charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanth, Bathala</creatorcontrib><creatorcontrib>Paul, Rinika</creatorcontrib><creatorcontrib>Kaliyaperumal, Deepa</creatorcontrib><creatorcontrib>Kannan, Ramani</creatorcontrib><creatorcontrib>Venkata Pavan Kumar, Yellapragada</creatorcontrib><creatorcontrib>Kalyan Chakravarthi, Maddikera</creatorcontrib><creatorcontrib>Venkatesan, Nithya</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanth, Bathala</au><au>Paul, Rinika</au><au>Kaliyaperumal, Deepa</au><au>Kannan, Ramani</au><au>Venkata Pavan Kumar, Yellapragada</au><au>Kalyan Chakravarthi, Maddikera</au><au>Venkatesan, Nithya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>5</issue><spage>1119</spage><pages>1119-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Innovations in electric vehicle technology have led to a need for maximum energy storage in the energy source to provide some extra kilometers. The size of electric vehicles limits the size of the batteries, thus limiting the amount of energy that can be stored. Range anxiety amongst the crowd prevents the entire population from shifting to a completely electric mode of transport. The extra energy harnessed from the kinetic energy produced due to braking during deceleration is sent back to the batteries to charge them, a process known as regenerative braking, providing a longer range to the vehicle. The work proposes efficient machine learning-based methods used to harness maximum braking energy from an electric vehicle to provide longer mileage. The methods are compared to the energy harnessed using fuzzy logic and artificial neural network techniques. These techniques take into consideration the state of charge (SOC) estimation of the battery, or the supercapacitor and the brake demand, to calculate the energy harnessed from the braking power. With the proposed machine learning techniques, there has been a 59% increase in energy extraction compared to fuzzy logic and artificial neural network methods used for regenerative energy extraction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12051119</doi><orcidid>https://orcid.org/0000-0001-9913-8867</orcidid><orcidid>https://orcid.org/0000-0002-9048-5157</orcidid><orcidid>https://orcid.org/0000-0001-5672-7055</orcidid><orcidid>https://orcid.org/0000-0002-9111-6927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-03, Vol.12 (5), p.1119
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2785186566
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Artificial intelligence
Artificial neural networks
Automobile driving
Automobiles, Electric
Batteries
Braking
Braking systems
Control algorithms
Deceleration
Efficiency
Electric vehicles
Energy
Energy storage
Energy use
Fuzzy logic
Kinetic energy
Machine learning
Methods
Neural networks
Regenerative braking
State of charge
title Maximizing Regenerative Braking Energy Harnessing in Electric Vehicles Using Machine Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Regenerative%20Braking%20Energy%20Harnessing%20in%20Electric%20Vehicles%20Using%20Machine%20Learning%20Techniques&rft.jtitle=Electronics%20(Basel)&rft.au=Prasanth,%20Bathala&rft.date=2023-03-01&rft.volume=12&rft.issue=5&rft.spage=1119&rft.pages=1119-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12051119&rft_dat=%3Cgale_proqu%3EA741740101%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e9cb79bd25d22943734d401545c3b6afaa9ceeea900176ac9d6b51ca468e03aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785186566&rft_id=info:pmid/&rft_galeid=A741740101&rfr_iscdi=true