Loading…
Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations
Water pollution is a serious concern for developing and undeveloped countries. Photocatalytic degradation of organic pollutants is an effective degradation method to restrain the green ecosystem. This research article presents a green, low-cost, and benevolent eco-friendly biosynthesis of cobalt oxi...
Saved in:
Published in: | Water (Basel) 2023-03, Vol.15 (5), p.910 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water pollution is a serious concern for developing and undeveloped countries. Photocatalytic degradation of organic pollutants is an effective degradation method to restrain the green ecosystem. This research article presents a green, low-cost, and benevolent eco-friendly biosynthesis of cobalt oxide (Co3O4) nanoparticles using Curcuma longa plant extract. The UV and visible region absorbance of Co3O4 nanoparticles estimated the Co2+ and Co3+ transitions on the lattice oxygen, and their bandgap of 2.2 eV was confirmed from the UV-DRS spectroscopy. The cubic structure and spherical shape of Co3O4 nanoparticles were estimated by using XRD and TEM characterizations. Plant molecules aggregation and their agglomerations on the nanoparticles were established from FTIR and EDX spectroscopy. Multiple cobalt valences on the oxygen surfaces and their reaction, bonding, and binding energies were analyzed from XPS measurements. The biogenic Co3O4 nanoparticles were executed against gram-positive (Staphylococcus aureus—S. aureus) and gram-negative (Escherichia coli—E. coli) bacteria. A gram-positive bacterial strain exhibited great resistivity on Co3O4 nanoparticles. Degradation of organic dye pollutants on the Co3O4 nanoparticles was performed against methylene blue (MB) dye under the conditions of visible light irradiation. Dye degradation efficiency pseudo-first-order kinetics on the pseudo-first-order kinetics denotes the rate of degradation over the MB dye. This research work achieved enhanced degradation potency against toxic organic dye and their radicals are excited from visible light irradiations. Absorption light and charged particle recombinations are reformed and provoked by the plant extract bio-molecules. In this process, there is no inferior yield development, and electrons are robustly stimulated. Furthermore, the biosynthesized Co3O4 nanoparticles determined the potency of bacterial susceptibility and catalytic efficacy over the industrial dye pollutants. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15050910 |