Loading…
Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization
Multi-view clustering, which appropriately integrates information from multiple sources to reveal data's inherent structure, is gaining traction in clustering. Though existing procedures have yielded satisfactory results, we observe that they have neglected the inherent local structure in the b...
Saved in:
Published in: | IEEE transactions on multimedia 2023, Vol.25, p.993-1007 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3 |
container_end_page | 1007 |
container_issue | |
container_start_page | 993 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Zhang, Tiejian Liu, Xinwang Gong, Lei Wang, Siwei Niu, Xin Shen, Li |
description | Multi-view clustering, which appropriately integrates information from multiple sources to reveal data's inherent structure, is gaining traction in clustering. Though existing procedures have yielded satisfactory results, we observe that they have neglected the inherent local structure in the base kernels. This may cause adverse effects on clustering. To solve the problem, we introduce LF-MKC-LKA, a simple yet effective late fusion multiple kernel clustering with local kernel alignment maximisation approach. In particular, we first determine the nearest k neighbours in the average kernel space for each sample and record the information in the nearest neighbor indicator matrix. Then, the nearest neighbor indicator matrix can be used to generate local structure matrix of each sample. The local kernels of each view may then be generated using the local structure matrix, retaining just the highly confident local similarities for learning the intrinsic global manifold of data. They can also be utilised to keep the block diagonal structure and improve the robustness of the underlying kernels against noise.We input the local kernels of each view into the kernel k-means (KKM) algorithm and get the local base partitions. Finally, we use a three-step iterative optimization approach to maximize the alignment of the consensus partition using base partitions and a regularisation term. As demonstrated, a significant number of trials on 11 multi-kernel benchmark datasets have shown that the proposed LF-MKC-LKA is effective and efficient. A number of experiments are also designed to demonstrate the fast convergence, excellent performance, robustness and low parameter sensitivity of the algorithm. Our code can be find at https://github.com/TiejianZhang/TMM21-LF-MKC-LKA . |
doi_str_mv | 10.1109/TMM.2021.3136094 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2785446708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9653838</ieee_id><sourcerecordid>2785446708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKfvgi8FnzsvadKkj2M4FVv2MvExZNl1ZnTtbFJQ_3ozNuUe7uC-77vjR8gthQmlUDwsq2rCgNFJRrMcCn5GRrTgNAWQ8jzOgkFaMAqX5Mr7LQDlAuSILEoTMJkP3nVtUg1NcPsGk1fsW2ySWTP4gL1rN8m7Cx9J2VnT_C2njdu0O2xDUpkvt3M_JsSMa3JRm8bjzamPydv8cTl7TsvF08tsWqaWFTSk8RtJ7XptLUhU2WptlUKU9QrYKlN1YdGIVZ3nxtCaZYYzFIJaLixVwGuG2ZjcH3P3ffc5oA962w19G09qJpXgPJegogqOKtt33vdY633vdqb_1hT0AZuO2PQBmz5hi5a7o8Uh4r-8yEWmYv0CJ4RpRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446708</pqid></control><display><type>article</type><title>Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Tiejian ; Liu, Xinwang ; Gong, Lei ; Wang, Siwei ; Niu, Xin ; Shen, Li</creator><creatorcontrib>Zhang, Tiejian ; Liu, Xinwang ; Gong, Lei ; Wang, Siwei ; Niu, Xin ; Shen, Li</creatorcontrib><description><![CDATA[Multi-view clustering, which appropriately integrates information from multiple sources to reveal data's inherent structure, is gaining traction in clustering. Though existing procedures have yielded satisfactory results, we observe that they have neglected the inherent local structure in the base kernels. This may cause adverse effects on clustering. To solve the problem, we introduce LF-MKC-LKA, a simple yet effective late fusion multiple kernel clustering with local kernel alignment maximisation approach. In particular, we first determine the nearest <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> neighbours in the average kernel space for each sample and record the information in the nearest neighbor indicator matrix. Then, the nearest neighbor indicator matrix can be used to generate local structure matrix of each sample. The local kernels of each view may then be generated using the local structure matrix, retaining just the highly confident local similarities for learning the intrinsic global manifold of data. They can also be utilised to keep the block diagonal structure and improve the robustness of the underlying kernels against noise.We input the local kernels of each view into the kernel <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means (KKM) algorithm and get the local base partitions. Finally, we use a three-step iterative optimization approach to maximize the alignment of the consensus partition using base partitions and a regularisation term. As demonstrated, a significant number of trials on 11 multi-kernel benchmark datasets have shown that the proposed LF-MKC-LKA is effective and efficient. A number of experiments are also designed to demonstrate the fast convergence, excellent performance, robustness and low parameter sensitivity of the algorithm. Our code can be find at https://github.com/TiejianZhang/TMM21-LF-MKC-LKA .]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3136094</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alignment ; Benchmark testing ; block diagonal structure ; Clustering ; Clustering algorithms ; Iterative methods ; Kernel ; Kernels ; local base partition ; local kernel ; Manifolds ; Maximization ; Multiple kernel clustering ; neighbor ; Optimization ; Parameter sensitivity ; Partitioning algorithms ; Regularization ; Robustness</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.993-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3</citedby><cites>FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3</cites><orcidid>0000-0002-9396-7688 ; 0000-0001-9517-262X ; 0000-0002-5230-2241 ; 0000-0001-9066-1475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9653838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Tiejian</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Gong, Lei</creatorcontrib><creatorcontrib>Wang, Siwei</creatorcontrib><creatorcontrib>Niu, Xin</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><title>Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Multi-view clustering, which appropriately integrates information from multiple sources to reveal data's inherent structure, is gaining traction in clustering. Though existing procedures have yielded satisfactory results, we observe that they have neglected the inherent local structure in the base kernels. This may cause adverse effects on clustering. To solve the problem, we introduce LF-MKC-LKA, a simple yet effective late fusion multiple kernel clustering with local kernel alignment maximisation approach. In particular, we first determine the nearest <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> neighbours in the average kernel space for each sample and record the information in the nearest neighbor indicator matrix. Then, the nearest neighbor indicator matrix can be used to generate local structure matrix of each sample. The local kernels of each view may then be generated using the local structure matrix, retaining just the highly confident local similarities for learning the intrinsic global manifold of data. They can also be utilised to keep the block diagonal structure and improve the robustness of the underlying kernels against noise.We input the local kernels of each view into the kernel <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means (KKM) algorithm and get the local base partitions. Finally, we use a three-step iterative optimization approach to maximize the alignment of the consensus partition using base partitions and a regularisation term. As demonstrated, a significant number of trials on 11 multi-kernel benchmark datasets have shown that the proposed LF-MKC-LKA is effective and efficient. A number of experiments are also designed to demonstrate the fast convergence, excellent performance, robustness and low parameter sensitivity of the algorithm. Our code can be find at https://github.com/TiejianZhang/TMM21-LF-MKC-LKA .]]></description><subject>Algorithms</subject><subject>Alignment</subject><subject>Benchmark testing</subject><subject>block diagonal structure</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Kernels</subject><subject>local base partition</subject><subject>local kernel</subject><subject>Manifolds</subject><subject>Maximization</subject><subject>Multiple kernel clustering</subject><subject>neighbor</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Partitioning algorithms</subject><subject>Regularization</subject><subject>Robustness</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOKfvgi8FnzsvadKkj2M4FVv2MvExZNl1ZnTtbFJQ_3ozNuUe7uC-77vjR8gthQmlUDwsq2rCgNFJRrMcCn5GRrTgNAWQ8jzOgkFaMAqX5Mr7LQDlAuSILEoTMJkP3nVtUg1NcPsGk1fsW2ySWTP4gL1rN8m7Cx9J2VnT_C2njdu0O2xDUpkvt3M_JsSMa3JRm8bjzamPydv8cTl7TsvF08tsWqaWFTSk8RtJ7XptLUhU2WptlUKU9QrYKlN1YdGIVZ3nxtCaZYYzFIJaLixVwGuG2ZjcH3P3ffc5oA962w19G09qJpXgPJegogqOKtt33vdY633vdqb_1hT0AZuO2PQBmz5hi5a7o8Uh4r-8yEWmYv0CJ4RpRA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Tiejian</creator><creator>Liu, Xinwang</creator><creator>Gong, Lei</creator><creator>Wang, Siwei</creator><creator>Niu, Xin</creator><creator>Shen, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9396-7688</orcidid><orcidid>https://orcid.org/0000-0001-9517-262X</orcidid><orcidid>https://orcid.org/0000-0002-5230-2241</orcidid><orcidid>https://orcid.org/0000-0001-9066-1475</orcidid></search><sort><creationdate>2023</creationdate><title>Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization</title><author>Zhang, Tiejian ; Liu, Xinwang ; Gong, Lei ; Wang, Siwei ; Niu, Xin ; Shen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Benchmark testing</topic><topic>block diagonal structure</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Kernels</topic><topic>local base partition</topic><topic>local kernel</topic><topic>Manifolds</topic><topic>Maximization</topic><topic>Multiple kernel clustering</topic><topic>neighbor</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Partitioning algorithms</topic><topic>Regularization</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tiejian</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Gong, Lei</creatorcontrib><creatorcontrib>Wang, Siwei</creatorcontrib><creatorcontrib>Niu, Xin</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tiejian</au><au>Liu, Xinwang</au><au>Gong, Lei</au><au>Wang, Siwei</au><au>Niu, Xin</au><au>Shen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>993</spage><epage>1007</epage><pages>993-1007</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Multi-view clustering, which appropriately integrates information from multiple sources to reveal data's inherent structure, is gaining traction in clustering. Though existing procedures have yielded satisfactory results, we observe that they have neglected the inherent local structure in the base kernels. This may cause adverse effects on clustering. To solve the problem, we introduce LF-MKC-LKA, a simple yet effective late fusion multiple kernel clustering with local kernel alignment maximisation approach. In particular, we first determine the nearest <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> neighbours in the average kernel space for each sample and record the information in the nearest neighbor indicator matrix. Then, the nearest neighbor indicator matrix can be used to generate local structure matrix of each sample. The local kernels of each view may then be generated using the local structure matrix, retaining just the highly confident local similarities for learning the intrinsic global manifold of data. They can also be utilised to keep the block diagonal structure and improve the robustness of the underlying kernels against noise.We input the local kernels of each view into the kernel <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means (KKM) algorithm and get the local base partitions. Finally, we use a three-step iterative optimization approach to maximize the alignment of the consensus partition using base partitions and a regularisation term. As demonstrated, a significant number of trials on 11 multi-kernel benchmark datasets have shown that the proposed LF-MKC-LKA is effective and efficient. A number of experiments are also designed to demonstrate the fast convergence, excellent performance, robustness and low parameter sensitivity of the algorithm. Our code can be find at https://github.com/TiejianZhang/TMM21-LF-MKC-LKA .]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3136094</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9396-7688</orcidid><orcidid>https://orcid.org/0000-0001-9517-262X</orcidid><orcidid>https://orcid.org/0000-0002-5230-2241</orcidid><orcidid>https://orcid.org/0000-0001-9066-1475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.993-1007 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2785446708 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Alignment Benchmark testing block diagonal structure Clustering Clustering algorithms Iterative methods Kernel Kernels local base partition local kernel Manifolds Maximization Multiple kernel clustering neighbor Optimization Parameter sensitivity Partitioning algorithms Regularization Robustness |
title | Late Fusion Multiple Kernel Clustering With Local Kernel Alignment Maximization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Late%20Fusion%20Multiple%20Kernel%20Clustering%20With%20Local%20Kernel%20Alignment%20Maximization&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Tiejian&rft.date=2023&rft.volume=25&rft.spage=993&rft.epage=1007&rft.pages=993-1007&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3136094&rft_dat=%3Cproquest_ieee_%3E2785446708%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-52071cddcc07e83bdc88ee7fb02b38f9cea5bf66aa1f23a42e551c45c1804f2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785446708&rft_id=info:pmid/&rft_ieee_id=9653838&rfr_iscdi=true |