Loading…
Uniqueness of First Passage Time Distributions via Fredholm Integral Equations
Let \(W\) be a standard Brownian motion with \(W_0 = 0\) and let \(b: \mathbb{R}_+ \to \mathbb{R}\) be a continuous function with \(b(0) > 0\). The first passage time (from below) is then defined as \begin{align*} \tau := \inf \{ t \geq 0 \vert W_t \geq b(t) \}. \end{align*} It is well-known that...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Christensen, Sören Fischer, Simon Hallmann, Oskar |
description | Let \(W\) be a standard Brownian motion with \(W_0 = 0\) and let \(b: \mathbb{R}_+ \to \mathbb{R}\) be a continuous function with \(b(0) > 0\). The first passage time (from below) is then defined as \begin{align*} \tau := \inf \{ t \geq 0 \vert W_t \geq b(t) \}. \end{align*} It is well-known that the distribution \(F\) of \(\tau\) satisfies a set of Fredholm equations of the first kind, which is used, for example, as a starting point for numerical approaches. For this, it is fundamental that the Fredholm equations have a unique solution. In this article, we prove this in a general setting using analytical methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2785476229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785476229</sourcerecordid><originalsourceid>FETCH-proquest_journals_27854762293</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3eOC6UF_6c60tuhEXdV0ipjWlTWxe4vkt4gFczWIGZsEC5HwXFQniioVEfRzHmOWYpjxgl5tWk5daEoFpoVKWHFwFkegk1GqUcFTkrLp7p4wmeCsBlZWPpxlGOGsnOysGKCcvvn7Dlq0YSIY_rtm2KuvDKXpZM2_INb3xVs-qwbxIkzxD3PP_qg_0uT6O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785476229</pqid></control><display><type>article</type><title>Uniqueness of First Passage Time Distributions via Fredholm Integral Equations</title><source>Publicly Available Content (ProQuest)</source><creator>Christensen, Sören ; Fischer, Simon ; Hallmann, Oskar</creator><creatorcontrib>Christensen, Sören ; Fischer, Simon ; Hallmann, Oskar</creatorcontrib><description>Let \(W\) be a standard Brownian motion with \(W_0 = 0\) and let \(b: \mathbb{R}_+ \to \mathbb{R}\) be a continuous function with \(b(0) > 0\). The first passage time (from below) is then defined as \begin{align*} \tau := \inf \{ t \geq 0 \vert W_t \geq b(t) \}. \end{align*} It is well-known that the distribution \(F\) of \(\tau\) satisfies a set of Fredholm equations of the first kind, which is used, for example, as a starting point for numerical approaches. For this, it is fundamental that the Fredholm equations have a unique solution. In this article, we prove this in a general setting using analytical methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Continuity (mathematics) ; Fredholm equations ; Integral equations ; Mathematical analysis</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2785476229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Christensen, Sören</creatorcontrib><creatorcontrib>Fischer, Simon</creatorcontrib><creatorcontrib>Hallmann, Oskar</creatorcontrib><title>Uniqueness of First Passage Time Distributions via Fredholm Integral Equations</title><title>arXiv.org</title><description>Let \(W\) be a standard Brownian motion with \(W_0 = 0\) and let \(b: \mathbb{R}_+ \to \mathbb{R}\) be a continuous function with \(b(0) > 0\). The first passage time (from below) is then defined as \begin{align*} \tau := \inf \{ t \geq 0 \vert W_t \geq b(t) \}. \end{align*} It is well-known that the distribution \(F\) of \(\tau\) satisfies a set of Fredholm equations of the first kind, which is used, for example, as a starting point for numerical approaches. For this, it is fundamental that the Fredholm equations have a unique solution. In this article, we prove this in a general setting using analytical methods.</description><subject>Brownian motion</subject><subject>Continuity (mathematics)</subject><subject>Fredholm equations</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3eOC6UF_6c60tuhEXdV0ipjWlTWxe4vkt4gFczWIGZsEC5HwXFQniioVEfRzHmOWYpjxgl5tWk5daEoFpoVKWHFwFkegk1GqUcFTkrLp7p4wmeCsBlZWPpxlGOGsnOysGKCcvvn7Dlq0YSIY_rtm2KuvDKXpZM2_INb3xVs-qwbxIkzxD3PP_qg_0uT6O</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Christensen, Sören</creator><creator>Fischer, Simon</creator><creator>Hallmann, Oskar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230309</creationdate><title>Uniqueness of First Passage Time Distributions via Fredholm Integral Equations</title><author>Christensen, Sören ; Fischer, Simon ; Hallmann, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27854762293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brownian motion</topic><topic>Continuity (mathematics)</topic><topic>Fredholm equations</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Sören</creatorcontrib><creatorcontrib>Fischer, Simon</creatorcontrib><creatorcontrib>Hallmann, Oskar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Sören</au><au>Fischer, Simon</au><au>Hallmann, Oskar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uniqueness of First Passage Time Distributions via Fredholm Integral Equations</atitle><jtitle>arXiv.org</jtitle><date>2023-03-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(W\) be a standard Brownian motion with \(W_0 = 0\) and let \(b: \mathbb{R}_+ \to \mathbb{R}\) be a continuous function with \(b(0) > 0\). The first passage time (from below) is then defined as \begin{align*} \tau := \inf \{ t \geq 0 \vert W_t \geq b(t) \}. \end{align*} It is well-known that the distribution \(F\) of \(\tau\) satisfies a set of Fredholm equations of the first kind, which is used, for example, as a starting point for numerical approaches. For this, it is fundamental that the Fredholm equations have a unique solution. In this article, we prove this in a general setting using analytical methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2785476229 |
source | Publicly Available Content (ProQuest) |
subjects | Brownian motion Continuity (mathematics) Fredholm equations Integral equations Mathematical analysis |
title | Uniqueness of First Passage Time Distributions via Fredholm Integral Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uniqueness%20of%20First%20Passage%20Time%20Distributions%20via%20Fredholm%20Integral%20Equations&rft.jtitle=arXiv.org&rft.au=Christensen,%20S%C3%B6ren&rft.date=2023-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2785476229%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27854762293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785476229&rft_id=info:pmid/&rfr_iscdi=true |