Loading…

Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth

Great progress made by heteroepitaxial growth technology encourages rapid development of III‐nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III‐nitride materials renders them attractive for white light‐emitting diodes (WLEDs)...

Full description

Saved in:
Bibliographic Details
Published in:Laser & photonics reviews 2023-03, Vol.17 (3), p.n/a
Main Authors: Fan, Benjie, Zhao, Xiaoyu, Zhang, Jingqiong, Sun, Yuechang, Yang, Hongzhi, Guo, L. Jay, Zhou, Shengjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3
cites cdi_FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3
container_end_page n/a
container_issue 3
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Fan, Benjie
Zhao, Xiaoyu
Zhang, Jingqiong
Sun, Yuechang
Yang, Hongzhi
Guo, L. Jay
Zhou, Shengjun
description Great progress made by heteroepitaxial growth technology encourages rapid development of III‐nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III‐nitride materials renders them attractive for white light‐emitting diodes (WLEDs) that are considered as next‐generation solid‐state lighting sources. However, commercial phosphor‐converted WLEDs suffer from poor color rendering index (CRI) and intense blue component, hard to fulfill demanding requirements simultaneously for energy efficiency and healthy lighting. Here, an efficient full‐spectrum WLED excited by monolithically integrated III‐nitride quantum structure is reported, in which trichromatic InGaN/GaN multiple quantum wells are constructed by bandgap engineering heteroepitaxy growth allowing flexible regulation of indium composition and quantum barrier thickness to manipulate carrier transport behavior. Furthermore, relationship between structural parameters and emission characteristics as well as their impact on white light performance is systematically demonstrated. Combined with commonly used green‐red phosphor mixture, the fabricated full‐spectrum warm/cold WLEDs can emit broadband and continuous spectra with low‐ratio blue component, first exhibiting superior CRI (> 97/98), color fidelity (97/97), saturation (100/99), and luminous efficacy (>120/140 lm W−1). This work demonstrates the advantages of bandgap‐engineered quantum structure applied in excitation source, and opens up new avenues for the exploration of high‐quality solid‐state lighting. This work reports efficient full‐spectrum white light‐emitting diodes (WLEDs) excited by monolithically integrated III‐nitride structure, where trichromatic multiple quantum wells are constructed by bandgap engineering technique, allowing flexible manipulation of carrier transport. With commercial green‐red phosphor mixture, the fabricated WLEDs achieve broadband spectra with low‐ratio blue component, superior color rendering, and high luminous efficacy at different correlated color temperatures.
doi_str_mv 10.1002/lpor.202200455
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786310886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786310886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTrHz0cQjlH5EKhQoiDFynEvqyo2D41C6sbHyG_klpCoqIzfcnU7v-570IHROSY8S4l6qSpueS1yXED8IDlCHRn3PiSLGDvd7RI7RSV0vCQna6nfQ560utZJ2IQVXaoPj0kJhuJVlgeM4_v74upPWyAzwQ8NL26zw3JpG2MYAzrXBo0apVjSvQLT3FX5ZSAt4OrzBb5Lja15mBa_wsCxkCWC2qROwYDRU0vJ3yRUeG722i1N0lHNVw9nv7KLn0fBpMHGms3E8uJo6wqNh4HCf-DzPPBoQ4UbAfEKJz9IU0jQIU8Y4y_tuGPqhBz7hlHEvgFAwwWnG3L7IvC662OVWRr82UNtkqRtTti8TN2wZURK1vYt6O5Uwuq4N5Ell5IqbTUJJsoWdbGEne9itge0Ma6lg8486md7PHv-8P9B5h80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786310886</pqid></control><display><type>article</type><title>Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fan, Benjie ; Zhao, Xiaoyu ; Zhang, Jingqiong ; Sun, Yuechang ; Yang, Hongzhi ; Guo, L. Jay ; Zhou, Shengjun</creator><creatorcontrib>Fan, Benjie ; Zhao, Xiaoyu ; Zhang, Jingqiong ; Sun, Yuechang ; Yang, Hongzhi ; Guo, L. Jay ; Zhou, Shengjun</creatorcontrib><description>Great progress made by heteroepitaxial growth technology encourages rapid development of III‐nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III‐nitride materials renders them attractive for white light‐emitting diodes (WLEDs) that are considered as next‐generation solid‐state lighting sources. However, commercial phosphor‐converted WLEDs suffer from poor color rendering index (CRI) and intense blue component, hard to fulfill demanding requirements simultaneously for energy efficiency and healthy lighting. Here, an efficient full‐spectrum WLED excited by monolithically integrated III‐nitride quantum structure is reported, in which trichromatic InGaN/GaN multiple quantum wells are constructed by bandgap engineering heteroepitaxy growth allowing flexible regulation of indium composition and quantum barrier thickness to manipulate carrier transport behavior. Furthermore, relationship between structural parameters and emission characteristics as well as their impact on white light performance is systematically demonstrated. Combined with commonly used green‐red phosphor mixture, the fabricated full‐spectrum warm/cold WLEDs can emit broadband and continuous spectra with low‐ratio blue component, first exhibiting superior CRI (&gt; 97/98), color fidelity (97/97), saturation (100/99), and luminous efficacy (&gt;120/140 lm W−1). This work demonstrates the advantages of bandgap‐engineered quantum structure applied in excitation source, and opens up new avenues for the exploration of high‐quality solid‐state lighting. This work reports efficient full‐spectrum white light‐emitting diodes (WLEDs) excited by monolithically integrated III‐nitride structure, where trichromatic multiple quantum wells are constructed by bandgap engineering technique, allowing flexible manipulation of carrier transport. With commercial green‐red phosphor mixture, the fabricated WLEDs achieve broadband spectra with low‐ratio blue component, superior color rendering, and high luminous efficacy at different correlated color temperatures.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202200455</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bandgap engineering heteroepitaxial growth ; Broadband ; carrier distribution rearrangement ; Carrier transport ; Color ; color rendering ; Continuous spectra ; Energy gap ; Excitation spectra ; full‐spectrum white LED ; Gallium nitrides ; Light emitting diodes ; Lighting ; Luminous efficacy ; Multi Quantum Wells ; Phosphors ; Quantum phenomena ; Saturation (color) ; Spectral emittance ; trichromatic multiple quantum wells ; White light</subject><ispartof>Laser &amp; photonics reviews, 2023-03, Vol.17 (3), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3</citedby><cites>FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3</cites><orcidid>0000-0002-9004-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fan, Benjie</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Jingqiong</creatorcontrib><creatorcontrib>Sun, Yuechang</creatorcontrib><creatorcontrib>Yang, Hongzhi</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><creatorcontrib>Zhou, Shengjun</creatorcontrib><title>Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth</title><title>Laser &amp; photonics reviews</title><description>Great progress made by heteroepitaxial growth technology encourages rapid development of III‐nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III‐nitride materials renders them attractive for white light‐emitting diodes (WLEDs) that are considered as next‐generation solid‐state lighting sources. However, commercial phosphor‐converted WLEDs suffer from poor color rendering index (CRI) and intense blue component, hard to fulfill demanding requirements simultaneously for energy efficiency and healthy lighting. Here, an efficient full‐spectrum WLED excited by monolithically integrated III‐nitride quantum structure is reported, in which trichromatic InGaN/GaN multiple quantum wells are constructed by bandgap engineering heteroepitaxy growth allowing flexible regulation of indium composition and quantum barrier thickness to manipulate carrier transport behavior. Furthermore, relationship between structural parameters and emission characteristics as well as their impact on white light performance is systematically demonstrated. Combined with commonly used green‐red phosphor mixture, the fabricated full‐spectrum warm/cold WLEDs can emit broadband and continuous spectra with low‐ratio blue component, first exhibiting superior CRI (&gt; 97/98), color fidelity (97/97), saturation (100/99), and luminous efficacy (&gt;120/140 lm W−1). This work demonstrates the advantages of bandgap‐engineered quantum structure applied in excitation source, and opens up new avenues for the exploration of high‐quality solid‐state lighting. This work reports efficient full‐spectrum white light‐emitting diodes (WLEDs) excited by monolithically integrated III‐nitride structure, where trichromatic multiple quantum wells are constructed by bandgap engineering technique, allowing flexible manipulation of carrier transport. With commercial green‐red phosphor mixture, the fabricated WLEDs achieve broadband spectra with low‐ratio blue component, superior color rendering, and high luminous efficacy at different correlated color temperatures.</description><subject>bandgap engineering heteroepitaxial growth</subject><subject>Broadband</subject><subject>carrier distribution rearrangement</subject><subject>Carrier transport</subject><subject>Color</subject><subject>color rendering</subject><subject>Continuous spectra</subject><subject>Energy gap</subject><subject>Excitation spectra</subject><subject>full‐spectrum white LED</subject><subject>Gallium nitrides</subject><subject>Light emitting diodes</subject><subject>Lighting</subject><subject>Luminous efficacy</subject><subject>Multi Quantum Wells</subject><subject>Phosphors</subject><subject>Quantum phenomena</subject><subject>Saturation (color)</subject><subject>Spectral emittance</subject><subject>trichromatic multiple quantum wells</subject><subject>White light</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTrHz0cQjlH5EKhQoiDFynEvqyo2D41C6sbHyG_klpCoqIzfcnU7v-570IHROSY8S4l6qSpueS1yXED8IDlCHRn3PiSLGDvd7RI7RSV0vCQna6nfQ560utZJ2IQVXaoPj0kJhuJVlgeM4_v74upPWyAzwQ8NL26zw3JpG2MYAzrXBo0apVjSvQLT3FX5ZSAt4OrzBb5Lja15mBa_wsCxkCWC2qROwYDRU0vJ3yRUeG722i1N0lHNVw9nv7KLn0fBpMHGms3E8uJo6wqNh4HCf-DzPPBoQ4UbAfEKJz9IU0jQIU8Y4y_tuGPqhBz7hlHEvgFAwwWnG3L7IvC662OVWRr82UNtkqRtTti8TN2wZURK1vYt6O5Uwuq4N5Ell5IqbTUJJsoWdbGEne9itge0Ma6lg8486md7PHv-8P9B5h80</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Fan, Benjie</creator><creator>Zhao, Xiaoyu</creator><creator>Zhang, Jingqiong</creator><creator>Sun, Yuechang</creator><creator>Yang, Hongzhi</creator><creator>Guo, L. Jay</creator><creator>Zhou, Shengjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9004-049X</orcidid></search><sort><creationdate>202303</creationdate><title>Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth</title><author>Fan, Benjie ; Zhao, Xiaoyu ; Zhang, Jingqiong ; Sun, Yuechang ; Yang, Hongzhi ; Guo, L. Jay ; Zhou, Shengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bandgap engineering heteroepitaxial growth</topic><topic>Broadband</topic><topic>carrier distribution rearrangement</topic><topic>Carrier transport</topic><topic>Color</topic><topic>color rendering</topic><topic>Continuous spectra</topic><topic>Energy gap</topic><topic>Excitation spectra</topic><topic>full‐spectrum white LED</topic><topic>Gallium nitrides</topic><topic>Light emitting diodes</topic><topic>Lighting</topic><topic>Luminous efficacy</topic><topic>Multi Quantum Wells</topic><topic>Phosphors</topic><topic>Quantum phenomena</topic><topic>Saturation (color)</topic><topic>Spectral emittance</topic><topic>trichromatic multiple quantum wells</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Benjie</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Jingqiong</creatorcontrib><creatorcontrib>Sun, Yuechang</creatorcontrib><creatorcontrib>Yang, Hongzhi</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><creatorcontrib>Zhou, Shengjun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Benjie</au><au>Zhao, Xiaoyu</au><au>Zhang, Jingqiong</au><au>Sun, Yuechang</au><au>Yang, Hongzhi</au><au>Guo, L. Jay</au><au>Zhou, Shengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-03</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Great progress made by heteroepitaxial growth technology encourages rapid development of III‐nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III‐nitride materials renders them attractive for white light‐emitting diodes (WLEDs) that are considered as next‐generation solid‐state lighting sources. However, commercial phosphor‐converted WLEDs suffer from poor color rendering index (CRI) and intense blue component, hard to fulfill demanding requirements simultaneously for energy efficiency and healthy lighting. Here, an efficient full‐spectrum WLED excited by monolithically integrated III‐nitride quantum structure is reported, in which trichromatic InGaN/GaN multiple quantum wells are constructed by bandgap engineering heteroepitaxy growth allowing flexible regulation of indium composition and quantum barrier thickness to manipulate carrier transport behavior. Furthermore, relationship between structural parameters and emission characteristics as well as their impact on white light performance is systematically demonstrated. Combined with commonly used green‐red phosphor mixture, the fabricated full‐spectrum warm/cold WLEDs can emit broadband and continuous spectra with low‐ratio blue component, first exhibiting superior CRI (&gt; 97/98), color fidelity (97/97), saturation (100/99), and luminous efficacy (&gt;120/140 lm W−1). This work demonstrates the advantages of bandgap‐engineered quantum structure applied in excitation source, and opens up new avenues for the exploration of high‐quality solid‐state lighting. This work reports efficient full‐spectrum white light‐emitting diodes (WLEDs) excited by monolithically integrated III‐nitride structure, where trichromatic multiple quantum wells are constructed by bandgap engineering technique, allowing flexible manipulation of carrier transport. With commercial green‐red phosphor mixture, the fabricated WLEDs achieve broadband spectra with low‐ratio blue component, superior color rendering, and high luminous efficacy at different correlated color temperatures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202200455</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9004-049X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-03, Vol.17 (3), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2786310886
source Wiley-Blackwell Read & Publish Collection
subjects bandgap engineering heteroepitaxial growth
Broadband
carrier distribution rearrangement
Carrier transport
Color
color rendering
Continuous spectra
Energy gap
Excitation spectra
full‐spectrum white LED
Gallium nitrides
Light emitting diodes
Lighting
Luminous efficacy
Multi Quantum Wells
Phosphors
Quantum phenomena
Saturation (color)
Spectral emittance
trichromatic multiple quantum wells
White light
title Monolithically Integrating III‐Nitride Quantum Structure for Full‐Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithically%20Integrating%20III%E2%80%90Nitride%20Quantum%20Structure%20for%20Full%E2%80%90Spectrum%20White%20LED%20via%20Bandgap%20Engineering%20Heteroepitaxial%20Growth&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Fan,%20Benjie&rft.date=2023-03&rft.volume=17&rft.issue=3&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202200455&rft_dat=%3Cproquest_cross%3E2786310886%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-a404afd3150c28e9401049bbebb57b99a9f6277473e40a19a35e7c9ca1d926cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786310886&rft_id=info:pmid/&rfr_iscdi=true