Loading…

The monodromy group of a function on a general curve

LetCg be a general curve of genusg≥4. Guralnick and others proved that the monodromy group of a coverCg→ℙ1 of degreen is eitherSn orAn. We show thatAn occurs forn≥2g+1. The corresponding result forSn is classical.

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2004-01, Vol.141 (1), p.355-368
Main Authors: Magaard, Kay, Völklein, Helmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73
cites cdi_FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73
container_end_page 368
container_issue 1
container_start_page 355
container_title Israel journal of mathematics
container_volume 141
creator Magaard, Kay
Völklein, Helmut
description LetCg be a general curve of genusg≥4. Guralnick and others proved that the monodromy group of a coverCg→ℙ1 of degreen is eitherSn orAn. We show thatAn occurs forn≥2g+1. The corresponding result forSn is classical.
doi_str_mv 10.1007/BF02772228
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786549377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786549377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73</originalsourceid><addsrcrecordid>eNpFkF1LwzAYhYMoWKc3_oKAd0L1Td4maS91OBUG3szrkOZjbqzNTFph_96OCcKB5-ZwDjyE3DJ4YADq8XkBXCnOeX1GCiakKGvB2DkpADgrOVP8klzlvAUQqBgWpFp9edrFProUuwNdpzjuaQzU0DD2dtjEnk4xdO17n8yO2jH9-GtyEcwu-5s_zsjn4mU1fyuXH6_v86dlablQQ8kFoJGIzgQ02E5k6BxK2VrThErUaME5Z73kKhjZBFFZgcwCoGqVVTgjd6fdfYrfo8-D3sYx9dOl5qqWompQHVv3p5ZNMefkg96nTWfSQTPQRyv63wr-Aud4UrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786549377</pqid></control><display><type>article</type><title>The monodromy group of a function on a general curve</title><source>Springer Link</source><creator>Magaard, Kay ; Völklein, Helmut</creator><creatorcontrib>Magaard, Kay ; Völklein, Helmut</creatorcontrib><description>LetCg be a general curve of genusg≥4. Guralnick and others proved that the monodromy group of a coverCg→ℙ1 of degreen is eitherSn orAn. We show thatAn occurs forn≥2g+1. The corresponding result forSn is classical.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/BF02772228</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematics</subject><ispartof>Israel journal of mathematics, 2004-01, Vol.141 (1), p.355-368</ispartof><rights>Hebrew University 2004.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73</citedby><cites>FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Magaard, Kay</creatorcontrib><creatorcontrib>Völklein, Helmut</creatorcontrib><title>The monodromy group of a function on a general curve</title><title>Israel journal of mathematics</title><description>LetCg be a general curve of genusg≥4. Guralnick and others proved that the monodromy group of a coverCg→ℙ1 of degreen is eitherSn orAn. We show thatAn occurs forn≥2g+1. The corresponding result forSn is classical.</description><subject>Mathematics</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAYhYMoWKc3_oKAd0L1Td4maS91OBUG3szrkOZjbqzNTFph_96OCcKB5-ZwDjyE3DJ4YADq8XkBXCnOeX1GCiakKGvB2DkpADgrOVP8klzlvAUQqBgWpFp9edrFProUuwNdpzjuaQzU0DD2dtjEnk4xdO17n8yO2jH9-GtyEcwu-5s_zsjn4mU1fyuXH6_v86dlablQQ8kFoJGIzgQ02E5k6BxK2VrThErUaME5Z73kKhjZBFFZgcwCoGqVVTgjd6fdfYrfo8-D3sYx9dOl5qqWompQHVv3p5ZNMefkg96nTWfSQTPQRyv63wr-Aud4UrI</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Magaard, Kay</creator><creator>Völklein, Helmut</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040101</creationdate><title>The monodromy group of a function on a general curve</title><author>Magaard, Kay ; Völklein, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magaard, Kay</creatorcontrib><creatorcontrib>Völklein, Helmut</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magaard, Kay</au><au>Völklein, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monodromy group of a function on a general curve</atitle><jtitle>Israel journal of mathematics</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>141</volume><issue>1</issue><spage>355</spage><epage>368</epage><pages>355-368</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>LetCg be a general curve of genusg≥4. Guralnick and others proved that the monodromy group of a coverCg→ℙ1 of degreen is eitherSn orAn. We show thatAn occurs forn≥2g+1. The corresponding result forSn is classical.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02772228</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2004-01, Vol.141 (1), p.355-368
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2786549377
source Springer Link
subjects Mathematics
title The monodromy group of a function on a general curve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monodromy%20group%20of%20a%20function%20on%20a%20general%20curve&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Magaard,%20Kay&rft.date=2004-01-01&rft.volume=141&rft.issue=1&rft.spage=355&rft.epage=368&rft.pages=355-368&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/BF02772228&rft_dat=%3Cproquest_cross%3E2786549377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-2503a633daf3a3b3da13dd366bca9f4583c0dddce627fa69f54c531c0037b7c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786549377&rft_id=info:pmid/&rfr_iscdi=true