Loading…
The category of extensions and idempotent completion
Building on previous work, we study the splitting of idempotents in the category of extensions \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) associated to a pair \((\mathcal{C},\mathbb{E})\) of an additive category and a biadditive functor to the category of abelian groups. In particular, we show t...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bennett-Tennenhaus, Raphael Haugland, Johanne Mads Hustad Sandøy Shah, Amit |
description | Building on previous work, we study the splitting of idempotents in the category of extensions \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) associated to a pair \((\mathcal{C},\mathbb{E})\) of an additive category and a biadditive functor to the category of abelian groups. In particular, we show that idempotents split in \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) whenever they do so in \(\mathcal{C}\), allowing us to prove that idempotent completions and extension categories are compatible constructions in a \(2\)-category-theoretic sense. Furthermore, we show that the exact category obtained by first taking the idempotent completion of an \(n\)-exangulated category \((\mathcal{C},\mathbb{E},\mathfrak{s})\), in the sense of Klapproth-Msapato-Shah, and then considering its category of extensions is equivalent to the exact category obtained by first passing to the extension category and then taking the idempotent completion. These two different approaches yield a pair of \(2\)-functors each taking small \(n\)-exangulated categories to small idempotent complete exact categories. The collection of equivalences that we provide constitutes a \(2\)-natural transformation between these \(2\)-functors. Similar results with no smallness assumptions and regarding weak idempotent completions are also proved. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2786648303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786648303</sourcerecordid><originalsourceid>FETCH-proquest_journals_27866483033</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW1u6ce4-iD_Bdhl5N0d3lJtTft4c-oKcD55wdyyTApTBKygPLQ5iEEFJXsiwhY6p-Im9txIHWD6ee4zuiCyO5wK3r-Njh4impyFta_IwxpRPb93YOmP94ZOf7rb4-Cr_Sa8MQm4m21aXUyMporQwIgP-uL4cCNSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786648303</pqid></control><display><type>article</type><title>The category of extensions and idempotent completion</title><source>ProQuest - Publicly Available Content Database</source><creator>Bennett-Tennenhaus, Raphael ; Haugland, Johanne ; Mads Hustad Sandøy ; Shah, Amit</creator><creatorcontrib>Bennett-Tennenhaus, Raphael ; Haugland, Johanne ; Mads Hustad Sandøy ; Shah, Amit</creatorcontrib><description>Building on previous work, we study the splitting of idempotents in the category of extensions \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) associated to a pair \((\mathcal{C},\mathbb{E})\) of an additive category and a biadditive functor to the category of abelian groups. In particular, we show that idempotents split in \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) whenever they do so in \(\mathcal{C}\), allowing us to prove that idempotent completions and extension categories are compatible constructions in a \(2\)-category-theoretic sense. Furthermore, we show that the exact category obtained by first taking the idempotent completion of an \(n\)-exangulated category \((\mathcal{C},\mathbb{E},\mathfrak{s})\), in the sense of Klapproth-Msapato-Shah, and then considering its category of extensions is equivalent to the exact category obtained by first passing to the extension category and then taking the idempotent completion. These two different approaches yield a pair of \(2\)-functors each taking small \(n\)-exangulated categories to small idempotent complete exact categories. The collection of equivalences that we provide constitutes a \(2\)-natural transformation between these \(2\)-functors. Similar results with no smallness assumptions and regarding weak idempotent completions are also proved.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Equivalence</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2786648303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bennett-Tennenhaus, Raphael</creatorcontrib><creatorcontrib>Haugland, Johanne</creatorcontrib><creatorcontrib>Mads Hustad Sandøy</creatorcontrib><creatorcontrib>Shah, Amit</creatorcontrib><title>The category of extensions and idempotent completion</title><title>arXiv.org</title><description>Building on previous work, we study the splitting of idempotents in the category of extensions \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) associated to a pair \((\mathcal{C},\mathbb{E})\) of an additive category and a biadditive functor to the category of abelian groups. In particular, we show that idempotents split in \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) whenever they do so in \(\mathcal{C}\), allowing us to prove that idempotent completions and extension categories are compatible constructions in a \(2\)-category-theoretic sense. Furthermore, we show that the exact category obtained by first taking the idempotent completion of an \(n\)-exangulated category \((\mathcal{C},\mathbb{E},\mathfrak{s})\), in the sense of Klapproth-Msapato-Shah, and then considering its category of extensions is equivalent to the exact category obtained by first passing to the extension category and then taking the idempotent completion. These two different approaches yield a pair of \(2\)-functors each taking small \(n\)-exangulated categories to small idempotent complete exact categories. The collection of equivalences that we provide constitutes a \(2\)-natural transformation between these \(2\)-functors. Similar results with no smallness assumptions and regarding weak idempotent completions are also proved.</description><subject>Categories</subject><subject>Equivalence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW1u6ce4-iD_Bdhl5N0d3lJtTft4c-oKcD55wdyyTApTBKygPLQ5iEEFJXsiwhY6p-Im9txIHWD6ee4zuiCyO5wK3r-Njh4impyFta_IwxpRPb93YOmP94ZOf7rb4-Cr_Sa8MQm4m21aXUyMporQwIgP-uL4cCNSE</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Bennett-Tennenhaus, Raphael</creator><creator>Haugland, Johanne</creator><creator>Mads Hustad Sandøy</creator><creator>Shah, Amit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231026</creationdate><title>The category of extensions and idempotent completion</title><author>Bennett-Tennenhaus, Raphael ; Haugland, Johanne ; Mads Hustad Sandøy ; Shah, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27866483033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Categories</topic><topic>Equivalence</topic><toplevel>online_resources</toplevel><creatorcontrib>Bennett-Tennenhaus, Raphael</creatorcontrib><creatorcontrib>Haugland, Johanne</creatorcontrib><creatorcontrib>Mads Hustad Sandøy</creatorcontrib><creatorcontrib>Shah, Amit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett-Tennenhaus, Raphael</au><au>Haugland, Johanne</au><au>Mads Hustad Sandøy</au><au>Shah, Amit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The category of extensions and idempotent completion</atitle><jtitle>arXiv.org</jtitle><date>2023-10-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Building on previous work, we study the splitting of idempotents in the category of extensions \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) associated to a pair \((\mathcal{C},\mathbb{E})\) of an additive category and a biadditive functor to the category of abelian groups. In particular, we show that idempotents split in \(\mathbb{E}\operatorname{-Ext}(\mathcal{C})\) whenever they do so in \(\mathcal{C}\), allowing us to prove that idempotent completions and extension categories are compatible constructions in a \(2\)-category-theoretic sense. Furthermore, we show that the exact category obtained by first taking the idempotent completion of an \(n\)-exangulated category \((\mathcal{C},\mathbb{E},\mathfrak{s})\), in the sense of Klapproth-Msapato-Shah, and then considering its category of extensions is equivalent to the exact category obtained by first passing to the extension category and then taking the idempotent completion. These two different approaches yield a pair of \(2\)-functors each taking small \(n\)-exangulated categories to small idempotent complete exact categories. The collection of equivalences that we provide constitutes a \(2\)-natural transformation between these \(2\)-functors. Similar results with no smallness assumptions and regarding weak idempotent completions are also proved.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2786648303 |
source | ProQuest - Publicly Available Content Database |
subjects | Categories Equivalence |
title | The category of extensions and idempotent completion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20category%20of%20extensions%20and%20idempotent%20completion&rft.jtitle=arXiv.org&rft.au=Bennett-Tennenhaus,%20Raphael&rft.date=2023-10-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2786648303%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27866483033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786648303&rft_id=info:pmid/&rfr_iscdi=true |