Loading…

Invexity of supremum and infimum functions

Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or in...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Australian Mathematical Society 2002-04, Vol.65 (2), p.289-306
Main Authors: Ha, Nguyen Xuan, Van Luu, Do
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073
cites cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073
container_end_page 306
container_issue 2
container_start_page 289
container_title Bulletin of the Australian Mathematical Society
container_volume 65
creator Ha, Nguyen Xuan
Van Luu, Do
description Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.
doi_str_mv 10.1017/S0004972700020335
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786765680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700020335</cupid><sourcerecordid>2786765680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLguvoDvBW8CdWXpEnaoy7uByyIuIK3kOZDstp2TVrZ_fe27KIH8TTvMTNvHoPQJYYbDFjcPgNAVggieiRAKTtCIywYSzGn9BiNBjod-FN0FuO63xgj-QhdL-ovu_XtLmlcErtNsFVXJao2ia-dH2bX1br1TR3P0YlTH9FeHHCMXqYPq8k8XT7OFpO7ZappwdtUG2BUZAJbnHOtyjLjmGRcZ9gJMMSynJaFKDUxBVaYM6uBl9SAU9wyA4KO0dX-7iY0n52NrVw3Xaj7SElEzgVnPIdehfcqHZoYg3VyE3ylwk5ikEMl8k8lvSfde3xs7fbHoMK75IIKJvnsSc7zV7aaZyDvez09ZKiqDN682d9X_k_5BlkfcB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786765680</pqid></control><display><type>article</type><title>Invexity of supremum and infimum functions</title><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Ha, Nguyen Xuan ; Van Luu, Do</creator><creatorcontrib>Ha, Nguyen Xuan ; Van Luu, Do</creatorcontrib><description>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700020335</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Infimum ; Mathematical analysis ; Mathematical programming</subject><ispartof>Bulletin of the Australian Mathematical Society, 2002-04, Vol.65 (2), p.289-306</ispartof><rights>Copyright © Australian Mathematical Society 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</citedby><cites>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700020335/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,55668</link.rule.ids></links><search><creatorcontrib>Ha, Nguyen Xuan</creatorcontrib><creatorcontrib>Van Luu, Do</creatorcontrib><title>Invexity of supremum and infimum functions</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</description><subject>Infimum</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLguvoDvBW8CdWXpEnaoy7uByyIuIK3kOZDstp2TVrZ_fe27KIH8TTvMTNvHoPQJYYbDFjcPgNAVggieiRAKTtCIywYSzGn9BiNBjod-FN0FuO63xgj-QhdL-ovu_XtLmlcErtNsFVXJao2ia-dH2bX1br1TR3P0YlTH9FeHHCMXqYPq8k8XT7OFpO7ZappwdtUG2BUZAJbnHOtyjLjmGRcZ9gJMMSynJaFKDUxBVaYM6uBl9SAU9wyA4KO0dX-7iY0n52NrVw3Xaj7SElEzgVnPIdehfcqHZoYg3VyE3ylwk5ikEMl8k8lvSfde3xs7fbHoMK75IIKJvnsSc7zV7aaZyDvez09ZKiqDN682d9X_k_5BlkfcB0</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Ha, Nguyen Xuan</creator><creator>Van Luu, Do</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Invexity of supremum and infimum functions</title><author>Ha, Nguyen Xuan ; Van Luu, Do</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Infimum</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Nguyen Xuan</creatorcontrib><creatorcontrib>Van Luu, Do</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Nguyen Xuan</au><au>Van Luu, Do</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invexity of supremum and infimum functions</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>65</volume><issue>2</issue><spage>289</spage><epage>306</epage><pages>289-306</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700020335</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2002-04, Vol.65 (2), p.289-306
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786765680
source KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)
subjects Infimum
Mathematical analysis
Mathematical programming
title Invexity of supremum and infimum functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invexity%20of%20supremum%20and%20infimum%20functions&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Ha,%20Nguyen%20Xuan&rft.date=2002-04-01&rft.volume=65&rft.issue=2&rft.spage=289&rft.epage=306&rft.pages=289-306&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700020335&rft_dat=%3Cproquest_cross%3E2786765680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786765680&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700020335&rfr_iscdi=true