Loading…
Invexity of supremum and infimum functions
Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or in...
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 2002-04, Vol.65 (2), p.289-306 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073 |
container_end_page | 306 |
container_issue | 2 |
container_start_page | 289 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 65 |
creator | Ha, Nguyen Xuan Van Luu, Do |
description | Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality. |
doi_str_mv | 10.1017/S0004972700020335 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786765680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700020335</cupid><sourcerecordid>2786765680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLguvoDvBW8CdWXpEnaoy7uByyIuIK3kOZDstp2TVrZ_fe27KIH8TTvMTNvHoPQJYYbDFjcPgNAVggieiRAKTtCIywYSzGn9BiNBjod-FN0FuO63xgj-QhdL-ovu_XtLmlcErtNsFVXJao2ia-dH2bX1br1TR3P0YlTH9FeHHCMXqYPq8k8XT7OFpO7ZappwdtUG2BUZAJbnHOtyjLjmGRcZ9gJMMSynJaFKDUxBVaYM6uBl9SAU9wyA4KO0dX-7iY0n52NrVw3Xaj7SElEzgVnPIdehfcqHZoYg3VyE3ylwk5ikEMl8k8lvSfde3xs7fbHoMK75IIKJvnsSc7zV7aaZyDvez09ZKiqDN682d9X_k_5BlkfcB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786765680</pqid></control><display><type>article</type><title>Invexity of supremum and infimum functions</title><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Ha, Nguyen Xuan ; Van Luu, Do</creator><creatorcontrib>Ha, Nguyen Xuan ; Van Luu, Do</creatorcontrib><description>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700020335</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Infimum ; Mathematical analysis ; Mathematical programming</subject><ispartof>Bulletin of the Australian Mathematical Society, 2002-04, Vol.65 (2), p.289-306</ispartof><rights>Copyright © Australian Mathematical Society 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</citedby><cites>FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700020335/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,55668</link.rule.ids></links><search><creatorcontrib>Ha, Nguyen Xuan</creatorcontrib><creatorcontrib>Van Luu, Do</creatorcontrib><title>Invexity of supremum and infimum functions</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</description><subject>Infimum</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLguvoDvBW8CdWXpEnaoy7uByyIuIK3kOZDstp2TVrZ_fe27KIH8TTvMTNvHoPQJYYbDFjcPgNAVggieiRAKTtCIywYSzGn9BiNBjod-FN0FuO63xgj-QhdL-ovu_XtLmlcErtNsFVXJao2ia-dH2bX1br1TR3P0YlTH9FeHHCMXqYPq8k8XT7OFpO7ZappwdtUG2BUZAJbnHOtyjLjmGRcZ9gJMMSynJaFKDUxBVaYM6uBl9SAU9wyA4KO0dX-7iY0n52NrVw3Xaj7SElEzgVnPIdehfcqHZoYg3VyE3ylwk5ikEMl8k8lvSfde3xs7fbHoMK75IIKJvnsSc7zV7aaZyDvez09ZKiqDN682d9X_k_5BlkfcB0</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Ha, Nguyen Xuan</creator><creator>Van Luu, Do</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Invexity of supremum and infimum functions</title><author>Ha, Nguyen Xuan ; Van Luu, Do</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Infimum</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Nguyen Xuan</creatorcontrib><creatorcontrib>Van Luu, Do</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Nguyen Xuan</au><au>Van Luu, Do</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invexity of supremum and infimum functions</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>65</volume><issue>2</issue><spage>289</spage><epage>306</epage><pages>289-306</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Under suitable assumptions we establish the formulas for calculating generalised gradients and generalised directional derivatives in the Clarke sense of the supremum and the infimum of an infinite family of Lipschitz functions. From these results we derive the results ensuring such a supremum or infimum are an invex function when all functions of the invex. Applying these results to a class of mathematical programs, we obtain necessary and sufficient conditions for optimality.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700020335</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2002-04, Vol.65 (2), p.289-306 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2786765680 |
source | KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS) |
subjects | Infimum Mathematical analysis Mathematical programming |
title | Invexity of supremum and infimum functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invexity%20of%20supremum%20and%20infimum%20functions&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Ha,%20Nguyen%20Xuan&rft.date=2002-04-01&rft.volume=65&rft.issue=2&rft.spage=289&rft.epage=306&rft.pages=289-306&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700020335&rft_dat=%3Cproquest_cross%3E2786765680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-cd0537471e186cabb461246c41f70d2e583b97bc2d91a165ec06b3d0fa6e5d073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786765680&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700020335&rfr_iscdi=true |