Loading…
Noise reduction in chaotic time series data
With a prescription for an ‘effective noise’ in the given noisy chaotic time series and searching out ‘similar’ strings of data, we give a simple method of ‘cleaning’ the data by an iterative process converging with decreasing length of the string. This has been found efficient even for small amount...
Saved in:
Published in: | Pramāṇa 1999-01, Vol.52 (1), p.25-37 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323 |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 25 |
container_title | Pramāṇa |
container_volume | 52 |
creator | Bhowal, A. Roy, T. K. |
description | With a prescription for an ‘effective noise’ in the given noisy chaotic time series and searching out ‘similar’ strings of data, we give a simple method of ‘cleaning’ the data by an iterative process converging with decreasing length of the string. This has been found efficient even for small amount of data. |
doi_str_mv | 10.1007/BF02827599 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786918312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786918312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsbf8GAO2U0ycvkY6mlVaHoRtchJm8wxU5qkln4751SwdW9i8s9cAi5ZPSWUaruHlaUa646Y47IjBoFrWKMHU8dqGgF1-aUnJWyoZQZAd2M3LykWLDJGEZfYxqaODT-06UafVPjFpuCOWJpgqvunJz07qvgxV_Oyftq-bZ4atevj8-L-3Xreadq-8G0RMGY08F5gzhBEZSTutNaCAHBCa-d7A10QUEAIwVwLoNSThkPHObk6vC7y-l7xFLtJo15mJCWKy0N08D2q-vDyudUSsbe7nLcuvxjGbV7GfZfBvwCRh9OkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786918312</pqid></control><display><type>article</type><title>Noise reduction in chaotic time series data</title><source>Indian Academy of Sciences</source><source>Springer Nature</source><creator>Bhowal, A. ; Roy, T. K.</creator><creatorcontrib>Bhowal, A. ; Roy, T. K.</creatorcontrib><description>With a prescription for an ‘effective noise’ in the given noisy chaotic time series and searching out ‘similar’ strings of data, we give a simple method of ‘cleaning’ the data by an iterative process converging with decreasing length of the string. This has been found efficient even for small amount of data.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/BF02827599</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Noise reduction ; Strings ; Time series</subject><ispartof>Pramāṇa, 1999-01, Vol.52 (1), p.25-37</ispartof><rights>Indian Academy of Sciences 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323</citedby><cites>FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Bhowal, A.</creatorcontrib><creatorcontrib>Roy, T. K.</creatorcontrib><title>Noise reduction in chaotic time series data</title><title>Pramāṇa</title><description>With a prescription for an ‘effective noise’ in the given noisy chaotic time series and searching out ‘similar’ strings of data, we give a simple method of ‘cleaning’ the data by an iterative process converging with decreasing length of the string. This has been found efficient even for small amount of data.</description><subject>Noise reduction</subject><subject>Strings</subject><subject>Time series</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMoWKsbf8GAO2U0ycvkY6mlVaHoRtchJm8wxU5qkln4751SwdW9i8s9cAi5ZPSWUaruHlaUa646Y47IjBoFrWKMHU8dqGgF1-aUnJWyoZQZAd2M3LykWLDJGEZfYxqaODT-06UafVPjFpuCOWJpgqvunJz07qvgxV_Oyftq-bZ4atevj8-L-3Xreadq-8G0RMGY08F5gzhBEZSTutNaCAHBCa-d7A10QUEAIwVwLoNSThkPHObk6vC7y-l7xFLtJo15mJCWKy0N08D2q-vDyudUSsbe7nLcuvxjGbV7GfZfBvwCRh9OkA</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Bhowal, A.</creator><creator>Roy, T. K.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199901</creationdate><title>Noise reduction in chaotic time series data</title><author>Bhowal, A. ; Roy, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Noise reduction</topic><topic>Strings</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowal, A.</creatorcontrib><creatorcontrib>Roy, T. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowal, A.</au><au>Roy, T. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise reduction in chaotic time series data</atitle><jtitle>Pramāṇa</jtitle><date>1999-01</date><risdate>1999</risdate><volume>52</volume><issue>1</issue><spage>25</spage><epage>37</epage><pages>25-37</pages><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>With a prescription for an ‘effective noise’ in the given noisy chaotic time series and searching out ‘similar’ strings of data, we give a simple method of ‘cleaning’ the data by an iterative process converging with decreasing length of the string. This has been found efficient even for small amount of data.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02827599</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4289 |
ispartof | Pramāṇa, 1999-01, Vol.52 (1), p.25-37 |
issn | 0304-4289 0973-7111 |
language | eng |
recordid | cdi_proquest_journals_2786918312 |
source | Indian Academy of Sciences; Springer Nature |
subjects | Noise reduction Strings Time series |
title | Noise reduction in chaotic time series data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T07%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20reduction%20in%20chaotic%20time%20series%20data&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Bhowal,%20A.&rft.date=1999-01&rft.volume=52&rft.issue=1&rft.spage=25&rft.epage=37&rft.pages=25-37&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/BF02827599&rft_dat=%3Cproquest_cross%3E2786918312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-b186e411a8dac9ee289e37a685884443da4c8a6f935d73d39643226d77a79c323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786918312&rft_id=info:pmid/&rfr_iscdi=true |