Loading…

Cobordism independence of Grassmann manifolds

This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsGk(Fn+k), withk

Saved in:
Bibliographic Details
Published in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2004-02, Vol.114 (1), p.33-38
Main Author: Das, Ashish Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-5cc2a8d6b10aa87ecd14d1864358f1e4fa60ab0353cce6908c3ec773f2227b4f3
container_end_page 38
container_issue 1
container_start_page 33
container_title Proceedings of the Indian Academy of Sciences. Mathematical sciences
container_volume 114
creator Das, Ashish Kumar
description This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsGk(Fn+k), withk
doi_str_mv 10.1007/BF02829669
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786920688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786920688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-5cc2a8d6b10aa87ecd14d1864358f1e4fa60ab0353cce6908c3ec773f2227b4f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsXf8GCNyH65mPfJEcttgoFL3oO2XzAlu5mTdqD_96VCl5m5vAwA0PILYMHBqAen9fANTeI5owswChBFer2fM68FVQyyS_JVa07AGakwAWhq9zlEvo6NP0Y4hRnGX1scmo2xdU6uHFsZulT3od6TS6S29d48-dL8rl--Vi90u375m31tKWeMzzQ1nvudMCOgXNaRR-YDEyjFK1OLMrkEFwHohXeRzSgvYheKZE456qTSSzJ3al3KvnrGOvB7vKxjPOk5Uqj4YBaz9T9ifIl11pislPpB1e-LQP7e4f9v0P8ANErUL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786920688</pqid></control><display><type>article</type><title>Cobordism independence of Grassmann manifolds</title><source>Springer Link</source><creator>Das, Ashish Kumar</creator><creatorcontrib>Das, Ashish Kumar</creatorcontrib><description>This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsGk(Fn+k), withk &lt;n and having real dimensiond, constitute a linearly independent set in the unoriented bordism group Nd regarded as a ℤ2-vector space.</description><identifier>ISSN: 0253-4142</identifier><identifier>EISSN: 0973-7685</identifier><identifier>DOI: 10.1007/BF02829669</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Manifolds (mathematics) ; Vector spaces</subject><ispartof>Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2004-02, Vol.114 (1), p.33-38</ispartof><rights>Indian Academy of Sciences 2004.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-5cc2a8d6b10aa87ecd14d1864358f1e4fa60ab0353cce6908c3ec773f2227b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Ashish Kumar</creatorcontrib><title>Cobordism independence of Grassmann manifolds</title><title>Proceedings of the Indian Academy of Sciences. Mathematical sciences</title><description>This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsGk(Fn+k), withk &lt;n and having real dimensiond, constitute a linearly independent set in the unoriented bordism group Nd regarded as a ℤ2-vector space.</description><subject>Manifolds (mathematics)</subject><subject>Vector spaces</subject><issn>0253-4142</issn><issn>0973-7685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsXf8GCNyH65mPfJEcttgoFL3oO2XzAlu5mTdqD_96VCl5m5vAwA0PILYMHBqAen9fANTeI5owswChBFer2fM68FVQyyS_JVa07AGakwAWhq9zlEvo6NP0Y4hRnGX1scmo2xdU6uHFsZulT3od6TS6S29d48-dL8rl--Vi90u375m31tKWeMzzQ1nvudMCOgXNaRR-YDEyjFK1OLMrkEFwHohXeRzSgvYheKZE456qTSSzJ3al3KvnrGOvB7vKxjPOk5Uqj4YBaz9T9ifIl11pislPpB1e-LQP7e4f9v0P8ANErUL0</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Das, Ashish Kumar</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040201</creationdate><title>Cobordism independence of Grassmann manifolds</title><author>Das, Ashish Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-5cc2a8d6b10aa87ecd14d1864358f1e4fa60ab0353cce6908c3ec773f2227b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Manifolds (mathematics)</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Ashish Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Ashish Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobordism independence of Grassmann manifolds</atitle><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>114</volume><issue>1</issue><spage>33</spage><epage>38</epage><pages>33-38</pages><issn>0253-4142</issn><eissn>0973-7685</eissn><abstract>This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsGk(Fn+k), withk &lt;n and having real dimensiond, constitute a linearly independent set in the unoriented bordism group Nd regarded as a ℤ2-vector space.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02829669</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-4142
ispartof Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2004-02, Vol.114 (1), p.33-38
issn 0253-4142
0973-7685
language eng
recordid cdi_proquest_journals_2786920688
source Springer Link
subjects Manifolds (mathematics)
Vector spaces
title Cobordism independence of Grassmann manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobordism%20independence%20of%20Grassmann%20manifolds&rft.jtitle=Proceedings%20of%20the%20Indian%20Academy%20of%20Sciences.%20Mathematical%20sciences&rft.au=Das,%20Ashish%20Kumar&rft.date=2004-02-01&rft.volume=114&rft.issue=1&rft.spage=33&rft.epage=38&rft.pages=33-38&rft.issn=0253-4142&rft.eissn=0973-7685&rft_id=info:doi/10.1007/BF02829669&rft_dat=%3Cproquest_cross%3E2786920688%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-5cc2a8d6b10aa87ecd14d1864358f1e4fa60ab0353cce6908c3ec773f2227b4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786920688&rft_id=info:pmid/&rfr_iscdi=true