Loading…

Structure of X-ray photoelectron, emission, and conversion spectra and molecular orbitals of uranium compounds

The fine structure of X-ray photoelectron spectra of uranium compounds in the range of electron binding energies from 0 to ∼50 eV is largely determined by the electrons of the outer and inner valence molecular orbitals arising from the valence atomic shells, including the U6p and Lns low-energy occu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural chemistry 1998-11, Vol.39 (6), p.850-857
Main Author: Teterin, Yu. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fine structure of X-ray photoelectron spectra of uranium compounds in the range of electron binding energies from 0 to ∼50 eV is largely determined by the electrons of the outer and inner valence molecular orbitals arising from the valence atomic shells, including the U6p and Lns low-energy occupied atomic shells. This result is in agreement with the data of the electronic structure calculations of these compounds and confirmed by the nuclear electron (conversion) and X-ray emission spectroscopic investigations. It is shown that the fine structure of X-ray photoelectron spectra associated with the electrons of inner valence molecular orbitals makes it possible to judge the participation of the electrons of the occupied atomic shells in chemical bonding, the structure of the nearest environments of the atom, and the bond lengths in the compounds. The overall contribution of the electrons of these molecular orbitals to the absolute value of binding energy may prove to be comparable to the contribution of the electrons of the outer valence molecular orbitals to atomic bonding. This is a new and important fact in chemistry.
ISSN:0022-4766
1573-8779
DOI:10.1007/BF02903593