Loading…
Enhanced fractional adaptive processing paradigm for power signal estimation
Fractional calculus tools have been exploited to effectively model variety of engineering, physics and applied sciences problems. The concept of fractional derivative has been incorporated in the optimization process of least mean square (LMS) iterative adaptive method. This study exploits the recen...
Saved in:
Published in: | Mathematical methods in the applied sciences 2023-04, Vol.46 (6), p.7013-7028 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fractional calculus tools have been exploited to effectively model variety of engineering, physics and applied sciences problems. The concept of fractional derivative has been incorporated in the optimization process of least mean square (LMS) iterative adaptive method. This study exploits the recently introduced enhanced fractional derivative based LMS (EFDLMS) for parameter estimation of power signal formed by the combination of different sinusoids. The EFDLMS addresses the issue of fractional extreme points and provides faster convergence speed. The performance of EFDLMS is evaluated in detail by taking different levels of noise in the composite sinusoidal signal as well as considering various fractional orders in the EFDLMS. Simulation results reveal that the EDFLMS is faster in convergence speed than the conventional LMS (i.e., EFDLMS for unity fractional order). |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.8951 |