Loading…

Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia

Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly effective NO3RR catalyst, showing a near 100% NH3‐Faradaic efficiency with th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-03, Vol.33 (12), p.n/a
Main Authors: Chen, Kai, Ma, Ziyu, Li, Xingchuan, Kang, Jilong, Ma, Dongwei, Chu, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3
cites cdi_FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced functional materials
container_volume 33
creator Chen, Kai
Ma, Ziyu
Li, Xingchuan
Kang, Jilong
Ma, Dongwei
Chu, Ke
description Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly effective NO3RR catalyst, showing a near 100% NH3‐Faradaic efficiency with the corresponding NH3 yield of 33.8 mg h−1 cm−2 at −0.6 V versus RHE, surpassing those of almost all ever reported NO3RR catalysts. In‐depth theoretical and operando spectroscopic investigations unveil that single‐atom Bi electronically couples with its neighboring Pd atoms to synergistically activate NO3− and destabilize *NO on Bi1Pd, leading to the reduced energy barrier of the potential‐determining step (*NO→*NOH) and enhanced protonation energetics of NO3−‐to‐NH3 pathway. Single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly efficient and durable catalyst for electrocatalytic reduction of nitrate to ammonia (NO3RR). Combined operando spectroscopic characterizations and theoretical calculations reveal that single‐atom Bi electronically couples with the neighboring Pd atoms to synergistically boost the protonation energetics of Bi1Pd for the enhanced NO3RR.
doi_str_mv 10.1002/adfm.202209890
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787158561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787158561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUgIMoOKdXzwHPnUm6Nsmxzk2FTQUVvIU0fZGOtJlpiuzmT_A3-kvcmMyjp_cO3_cefAidUzKihLBLXdlmxAhjRApJDtCA5jRPUsLE4X6nr8fopOuWhFDO0_EALZ7q9s3B9-dXEX2Dr2pcOOfXUOHHCi8gauegBWx9wPd1DDoCnjowMfgAVW9i7VscPS6axre1PkVHVrsOzn7nEL3Mps-T22T-cHM3KeaJSSknibVClJAJGAttUklLmrI8BUIg41bbspLGCMFyaZk1QgKvSsitLYEbk1VUp0N0sbu7Cv69hy6qpe9Du3mpGBecZiLL6YYa7SgTfNcFsGoV6kaHtaJEbZOpbTK1T7YR5E74qB2s_6FVcT1b_Lk_Z1Bxug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787158561</pqid></control><display><type>article</type><title>Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Kai ; Ma, Ziyu ; Li, Xingchuan ; Kang, Jilong ; Ma, Dongwei ; Chu, Ke</creator><creatorcontrib>Chen, Kai ; Ma, Ziyu ; Li, Xingchuan ; Kang, Jilong ; Ma, Dongwei ; Chu, Ke</creatorcontrib><description>Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly effective NO3RR catalyst, showing a near 100% NH3‐Faradaic efficiency with the corresponding NH3 yield of 33.8 mg h−1 cm−2 at −0.6 V versus RHE, surpassing those of almost all ever reported NO3RR catalysts. In‐depth theoretical and operando spectroscopic investigations unveil that single‐atom Bi electronically couples with its neighboring Pd atoms to synergistically activate NO3− and destabilize *NO on Bi1Pd, leading to the reduced energy barrier of the potential‐determining step (*NO→*NOH) and enhanced protonation energetics of NO3−‐to‐NH3 pathway. Single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly efficient and durable catalyst for electrocatalytic reduction of nitrate to ammonia (NO3RR). Combined operando spectroscopic characterizations and theoretical calculations reveal that single‐atom Bi electronically couples with the neighboring Pd atoms to synergistically boost the protonation energetics of Bi1Pd for the enhanced NO3RR.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209890</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Bismuth ; Catalysts ; Chemical reduction ; electrocatalytic nitrate reductions ; Materials science ; metallenes ; operando spectroscopic characterizations ; Palladium ; Protonation ; single‐atom alloys ; theoretical computations ; Wastewater</subject><ispartof>Advanced functional materials, 2023-03, Vol.33 (12), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3</citedby><cites>FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3</cites><orcidid>0000-0001-9126-9264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Ma, Ziyu</creatorcontrib><creatorcontrib>Li, Xingchuan</creatorcontrib><creatorcontrib>Kang, Jilong</creatorcontrib><creatorcontrib>Ma, Dongwei</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><title>Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia</title><title>Advanced functional materials</title><description>Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly effective NO3RR catalyst, showing a near 100% NH3‐Faradaic efficiency with the corresponding NH3 yield of 33.8 mg h−1 cm−2 at −0.6 V versus RHE, surpassing those of almost all ever reported NO3RR catalysts. In‐depth theoretical and operando spectroscopic investigations unveil that single‐atom Bi electronically couples with its neighboring Pd atoms to synergistically activate NO3− and destabilize *NO on Bi1Pd, leading to the reduced energy barrier of the potential‐determining step (*NO→*NOH) and enhanced protonation energetics of NO3−‐to‐NH3 pathway. Single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly efficient and durable catalyst for electrocatalytic reduction of nitrate to ammonia (NO3RR). Combined operando spectroscopic characterizations and theoretical calculations reveal that single‐atom Bi electronically couples with the neighboring Pd atoms to synergistically boost the protonation energetics of Bi1Pd for the enhanced NO3RR.</description><subject>Ammonia</subject><subject>Bismuth</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>electrocatalytic nitrate reductions</subject><subject>Materials science</subject><subject>metallenes</subject><subject>operando spectroscopic characterizations</subject><subject>Palladium</subject><subject>Protonation</subject><subject>single‐atom alloys</subject><subject>theoretical computations</subject><subject>Wastewater</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUgIMoOKdXzwHPnUm6Nsmxzk2FTQUVvIU0fZGOtJlpiuzmT_A3-kvcmMyjp_cO3_cefAidUzKihLBLXdlmxAhjRApJDtCA5jRPUsLE4X6nr8fopOuWhFDO0_EALZ7q9s3B9-dXEX2Dr2pcOOfXUOHHCi8gauegBWx9wPd1DDoCnjowMfgAVW9i7VscPS6axre1PkVHVrsOzn7nEL3Mps-T22T-cHM3KeaJSSknibVClJAJGAttUklLmrI8BUIg41bbspLGCMFyaZk1QgKvSsitLYEbk1VUp0N0sbu7Cv69hy6qpe9Du3mpGBecZiLL6YYa7SgTfNcFsGoV6kaHtaJEbZOpbTK1T7YR5E74qB2s_6FVcT1b_Lk_Z1Bxug</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chen, Kai</creator><creator>Ma, Ziyu</creator><creator>Li, Xingchuan</creator><creator>Kang, Jilong</creator><creator>Ma, Dongwei</creator><creator>Chu, Ke</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9126-9264</orcidid></search><sort><creationdate>20230301</creationdate><title>Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia</title><author>Chen, Kai ; Ma, Ziyu ; Li, Xingchuan ; Kang, Jilong ; Ma, Dongwei ; Chu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Bismuth</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>electrocatalytic nitrate reductions</topic><topic>Materials science</topic><topic>metallenes</topic><topic>operando spectroscopic characterizations</topic><topic>Palladium</topic><topic>Protonation</topic><topic>single‐atom alloys</topic><topic>theoretical computations</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Ma, Ziyu</creatorcontrib><creatorcontrib>Li, Xingchuan</creatorcontrib><creatorcontrib>Kang, Jilong</creatorcontrib><creatorcontrib>Ma, Dongwei</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kai</au><au>Ma, Ziyu</au><au>Li, Xingchuan</au><au>Kang, Jilong</au><au>Ma, Dongwei</au><au>Chu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia</atitle><jtitle>Advanced functional materials</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>12</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly effective NO3RR catalyst, showing a near 100% NH3‐Faradaic efficiency with the corresponding NH3 yield of 33.8 mg h−1 cm−2 at −0.6 V versus RHE, surpassing those of almost all ever reported NO3RR catalysts. In‐depth theoretical and operando spectroscopic investigations unveil that single‐atom Bi electronically couples with its neighboring Pd atoms to synergistically activate NO3− and destabilize *NO on Bi1Pd, leading to the reduced energy barrier of the potential‐determining step (*NO→*NOH) and enhanced protonation energetics of NO3−‐to‐NH3 pathway. Single‐atom Bi alloyed Pd metallene (Bi1Pd) is reported as a highly efficient and durable catalyst for electrocatalytic reduction of nitrate to ammonia (NO3RR). Combined operando spectroscopic characterizations and theoretical calculations reveal that single‐atom Bi electronically couples with the neighboring Pd atoms to synergistically boost the protonation energetics of Bi1Pd for the enhanced NO3RR.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209890</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9126-9264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-03, Vol.33 (12), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2787158561
source Wiley-Blackwell Read & Publish Collection
subjects Ammonia
Bismuth
Catalysts
Chemical reduction
electrocatalytic nitrate reductions
Materials science
metallenes
operando spectroscopic characterizations
Palladium
Protonation
single‐atom alloys
theoretical computations
Wastewater
title Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Atom%20Bi%20Alloyed%20Pd%20Metallene%20for%20Nitrate%20Electroreduction%20to%20Ammonia&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Kai&rft.date=2023-03-01&rft.volume=33&rft.issue=12&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209890&rft_dat=%3Cproquest_cross%3E2787158561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-ff88be58e48ac391b13263e00e57fafbd9cc88269f2fc89e7dbe6ffbe7cc5d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787158561&rft_id=info:pmid/&rfr_iscdi=true