Loading…
Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy
In the present study, the fatigue crack propagation in 5052 Al alloy processed through different cryogenic rolling methods has been investigated in detail. The solution-treated 5052 Al alloy was subjected to different cryogenic rolling methods such as cryorolling (CR), cryo groove rolling (CGR) and...
Saved in:
Published in: | Metallography, microstructure, and analysis microstructure, and analysis, 2023-02, Vol.12 (1), p.62-73 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-c34ed7c1c0710a8b7dac685fcf73064071c470f8af4edec93ea1f17318b616863 |
container_end_page | 73 |
container_issue | 1 |
container_start_page | 62 |
container_title | Metallography, microstructure, and analysis |
container_volume | 12 |
creator | Yogesha, K. K. Joshi, Amit Raja, A. Jayaganthan, R. Verma, Raviraj |
description | In the present study, the fatigue crack propagation in 5052 Al alloy processed through different cryogenic rolling methods has been investigated in detail. The solution-treated 5052 Al alloy was subjected to different cryogenic rolling methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW). The CR, CGR and CGW processed samples exhibit threshold stress intensity value (Δ
K
th
) of 4.88, 6.5 and 5.5 MPa m
1/2
, whereas ST sample possesses Δ
K
th
of 3.75 MPa m
1/2
. The formation of UFG grains of size 125–200 nm as observed through the TEM images along with improved elastic strength of the cryo deformed samples are responsible for the improvement of Δ
K
th
. |
doi_str_mv | 10.1007/s13632-022-00918-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787238830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787238830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c34ed7c1c0710a8b7dac685fcf73064071c470f8af4edec93ea1f17318b616863</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bJPssdRWhYIi9RzSNFmj66Ymu4f9905d0ZuQIcPM884ML0KXlFxTQuRNplxwVhAGQSqqiuEETRitWFExSU5_c8HO0SznsAOKK1aycoK2K--d7XD0-DZAmlzb4efYNKGt8dbZ1zZ89i7j2OK16ULdO7xMxr7jpxQPpoYSdEKL52TO8KKB18ThAp1502Q3-_mn6GW92i7vi83j3cNysSks3NUVlpduLy21RFJi1E7ujRVq7q2XnIgSqraUxCvjgXO24s5QTyWnaieoUIJP0dU495Di8cpOv8U-tbBSM6kk40pxAhQbKZtizsl5fUjhw6RBU6KPBurRQA0G6m8D9QAiPooywG3t0t_of1Rf75dyPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787238830</pqid></control><display><type>article</type><title>Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy</title><source>Springer Nature</source><creator>Yogesha, K. K. ; Joshi, Amit ; Raja, A. ; Jayaganthan, R. ; Verma, Raviraj</creator><creatorcontrib>Yogesha, K. K. ; Joshi, Amit ; Raja, A. ; Jayaganthan, R. ; Verma, Raviraj</creatorcontrib><description>In the present study, the fatigue crack propagation in 5052 Al alloy processed through different cryogenic rolling methods has been investigated in detail. The solution-treated 5052 Al alloy was subjected to different cryogenic rolling methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW). The CR, CGR and CGW processed samples exhibit threshold stress intensity value (Δ
K
th
) of 4.88, 6.5 and 5.5 MPa m
1/2
, whereas ST sample possesses Δ
K
th
of 3.75 MPa m
1/2
. The formation of UFG grains of size 125–200 nm as observed through the TEM images along with improved elastic strength of the cryo deformed samples are responsible for the improvement of Δ
K
th
.</description><identifier>ISSN: 2192-9262</identifier><identifier>EISSN: 2192-9270</identifier><identifier>DOI: 10.1007/s13632-022-00918-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack propagation ; Elastic deformation ; Fatigue failure ; Grooves ; Materials Science ; Metallic Materials ; Nanotechnology ; Peer-reviewed Paper ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Threshold stress ; Warm rolling ; Warm working</subject><ispartof>Metallography, microstructure, and analysis, 2023-02, Vol.12 (1), p.62-73</ispartof><rights>ASM International 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c34ed7c1c0710a8b7dac685fcf73064071c470f8af4edec93ea1f17318b616863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Yogesha, K. K.</creatorcontrib><creatorcontrib>Joshi, Amit</creatorcontrib><creatorcontrib>Raja, A.</creatorcontrib><creatorcontrib>Jayaganthan, R.</creatorcontrib><creatorcontrib>Verma, Raviraj</creatorcontrib><title>Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy</title><title>Metallography, microstructure, and analysis</title><addtitle>Metallogr. Microstruct. Anal</addtitle><description>In the present study, the fatigue crack propagation in 5052 Al alloy processed through different cryogenic rolling methods has been investigated in detail. The solution-treated 5052 Al alloy was subjected to different cryogenic rolling methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW). The CR, CGR and CGW processed samples exhibit threshold stress intensity value (Δ
K
th
) of 4.88, 6.5 and 5.5 MPa m
1/2
, whereas ST sample possesses Δ
K
th
of 3.75 MPa m
1/2
. The formation of UFG grains of size 125–200 nm as observed through the TEM images along with improved elastic strength of the cryo deformed samples are responsible for the improvement of Δ
K
th
.</description><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Elastic deformation</subject><subject>Fatigue failure</subject><subject>Grooves</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Peer-reviewed Paper</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Threshold stress</subject><subject>Warm rolling</subject><subject>Warm working</subject><issn>2192-9262</issn><issn>2192-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bJPssdRWhYIi9RzSNFmj66Ymu4f9905d0ZuQIcPM884ML0KXlFxTQuRNplxwVhAGQSqqiuEETRitWFExSU5_c8HO0SznsAOKK1aycoK2K--d7XD0-DZAmlzb4efYNKGt8dbZ1zZ89i7j2OK16ULdO7xMxr7jpxQPpoYSdEKL52TO8KKB18ThAp1502Q3-_mn6GW92i7vi83j3cNysSks3NUVlpduLy21RFJi1E7ujRVq7q2XnIgSqraUxCvjgXO24s5QTyWnaieoUIJP0dU495Di8cpOv8U-tbBSM6kk40pxAhQbKZtizsl5fUjhw6RBU6KPBurRQA0G6m8D9QAiPooywG3t0t_of1Rf75dyPQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Yogesha, K. K.</creator><creator>Joshi, Amit</creator><creator>Raja, A.</creator><creator>Jayaganthan, R.</creator><creator>Verma, Raviraj</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy</title><author>Yogesha, K. K. ; Joshi, Amit ; Raja, A. ; Jayaganthan, R. ; Verma, Raviraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c34ed7c1c0710a8b7dac685fcf73064071c470f8af4edec93ea1f17318b616863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Elastic deformation</topic><topic>Fatigue failure</topic><topic>Grooves</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Peer-reviewed Paper</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Threshold stress</topic><topic>Warm rolling</topic><topic>Warm working</topic><toplevel>online_resources</toplevel><creatorcontrib>Yogesha, K. K.</creatorcontrib><creatorcontrib>Joshi, Amit</creatorcontrib><creatorcontrib>Raja, A.</creatorcontrib><creatorcontrib>Jayaganthan, R.</creatorcontrib><creatorcontrib>Verma, Raviraj</creatorcontrib><collection>CrossRef</collection><jtitle>Metallography, microstructure, and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yogesha, K. K.</au><au>Joshi, Amit</au><au>Raja, A.</au><au>Jayaganthan, R.</au><au>Verma, Raviraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy</atitle><jtitle>Metallography, microstructure, and analysis</jtitle><stitle>Metallogr. Microstruct. Anal</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>2192-9262</issn><eissn>2192-9270</eissn><abstract>In the present study, the fatigue crack propagation in 5052 Al alloy processed through different cryogenic rolling methods has been investigated in detail. The solution-treated 5052 Al alloy was subjected to different cryogenic rolling methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW). The CR, CGR and CGW processed samples exhibit threshold stress intensity value (Δ
K
th
) of 4.88, 6.5 and 5.5 MPa m
1/2
, whereas ST sample possesses Δ
K
th
of 3.75 MPa m
1/2
. The formation of UFG grains of size 125–200 nm as observed through the TEM images along with improved elastic strength of the cryo deformed samples are responsible for the improvement of Δ
K
th
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13632-022-00918-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-9262 |
ispartof | Metallography, microstructure, and analysis, 2023-02, Vol.12 (1), p.62-73 |
issn | 2192-9262 2192-9270 |
language | eng |
recordid | cdi_proquest_journals_2787238830 |
source | Springer Nature |
subjects | Aluminum base alloys Characterization and Evaluation of Materials Chemistry and Materials Science Crack propagation Elastic deformation Fatigue failure Grooves Materials Science Metallic Materials Nanotechnology Peer-reviewed Paper Structural Materials Surfaces and Interfaces Thin Films Threshold stress Warm rolling Warm working |
title | Effect of Different Rolling Techniques on Fatigue Crack Propagation in 5052 Al Alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Different%20Rolling%20Techniques%20on%20Fatigue%20Crack%20Propagation%20in%205052%20Al%20Alloy&rft.jtitle=Metallography,%20microstructure,%20and%20analysis&rft.au=Yogesha,%20K.%20K.&rft.date=2023-02-01&rft.volume=12&rft.issue=1&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=2192-9262&rft.eissn=2192-9270&rft_id=info:doi/10.1007/s13632-022-00918-y&rft_dat=%3Cproquest_cross%3E2787238830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-c34ed7c1c0710a8b7dac685fcf73064071c470f8af4edec93ea1f17318b616863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787238830&rft_id=info:pmid/&rfr_iscdi=true |