Loading…
MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS
We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree a...
Saved in:
Published in: | The Journal of symbolic logic 2017-03, Vol.82 (1), p.258-271, Article 258 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3 |
container_end_page | 271 |
container_issue | 1 |
container_start_page | 258 |
container_title | The Journal of symbolic logic |
container_volume | 82 |
creator | CONLEY, CLINTON T. MILLER, BENJAMIN D. |
description | We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree at least three generating μ-hyperfinite equivalence relations admit μ-measurable matchings. We establish the analogous result for Baire measurable matchings in the locally finite case, and provide a counterexample in the locally countable case. |
doi_str_mv | 10.1017/jsl.2016.44 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787299028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26358447</jstor_id><sourcerecordid>26358447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3</originalsourceid><addsrcrecordid>eNp1kEtrwkAUhYfSQq3tqutCoMsSO6_MYxlDjEI0EnXhapiMCSRYY2fiwn_fWEsXha7u5jvfuRwAnhEcIYj4e-P2IwwRG1F6AwZIUuIHQrBbMIAQY58KhO_Bg3MNhDCQVAxAMo_D1SYPx2nsLeN8Ekdrbx6uo-lskay8SZZ7YbSN0lnkpVkUpunWi7LNYv3Nj7M8Tr0kD5fT1SO4q_TelU8_dwg2k7jX-GmWzPqgb7AgnR_0X-4KXpSYIqY5CzChzBiyQwXlrOTaGGYqIyU1gUZMcFYFhlRSFELDUhRkCF6v3qNtP0-l61TTnuyhr1SYC46lhH3RELxdKWNb52xZqaOtP7Q9KwTVZSnVL6UuSylKexr9oU3d6a5uD53V9f6fzMs107iutb96zEggKOXkC-Mvbs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787299028</pqid></control><display><type>article</type><title>MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS</title><source>Cambridge Journals Online</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>CONLEY, CLINTON T. ; MILLER, BENJAMIN D.</creator><creatorcontrib>CONLEY, CLINTON T. ; MILLER, BENJAMIN D.</creatorcontrib><description>We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree at least three generating μ-hyperfinite equivalence relations admit μ-measurable matchings. We establish the analogous result for Baire measurable matchings in the locally finite case, and provide a counterexample in the locally countable case.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2016.44</identifier><language>eng</language><publisher>Pasadena: Association for Symbolic Logic, Inc</publisher><subject>Logic ; Mathematics ; Philosophy ; Structuralism</subject><ispartof>The Journal of symbolic logic, 2017-03, Vol.82 (1), p.258-271, Article 258</ispartof><rights>Copyright © 2017 Association for Symbolic Logic</rights><rights>Copyright © The Association for Symbolic Logic 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3</citedby><cites>FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26358447$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26358447$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>CONLEY, CLINTON T.</creatorcontrib><creatorcontrib>MILLER, BENJAMIN D.</creatorcontrib><title>MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS</title><title>The Journal of symbolic logic</title><description>We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree at least three generating μ-hyperfinite equivalence relations admit μ-measurable matchings. We establish the analogous result for Baire measurable matchings in the locally finite case, and provide a counterexample in the locally countable case.</description><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Structuralism</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwkAUhYfSQq3tqutCoMsSO6_MYxlDjEI0EnXhapiMCSRYY2fiwn_fWEsXha7u5jvfuRwAnhEcIYj4e-P2IwwRG1F6AwZIUuIHQrBbMIAQY58KhO_Bg3MNhDCQVAxAMo_D1SYPx2nsLeN8Ekdrbx6uo-lskay8SZZ7YbSN0lnkpVkUpunWi7LNYv3Nj7M8Tr0kD5fT1SO4q_TelU8_dwg2k7jX-GmWzPqgb7AgnR_0X-4KXpSYIqY5CzChzBiyQwXlrOTaGGYqIyU1gUZMcFYFhlRSFELDUhRkCF6v3qNtP0-l61TTnuyhr1SYC46lhH3RELxdKWNb52xZqaOtP7Q9KwTVZSnVL6UuSylKexr9oU3d6a5uD53V9f6fzMs107iutb96zEggKOXkC-Mvbs8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>CONLEY, CLINTON T.</creator><creator>MILLER, BENJAMIN D.</creator><general>Association for Symbolic Logic, Inc</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>20170301</creationdate><title>MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS</title><author>CONLEY, CLINTON T. ; MILLER, BENJAMIN D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Structuralism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONLEY, CLINTON T.</creatorcontrib><creatorcontrib>MILLER, BENJAMIN D.</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONLEY, CLINTON T.</au><au>MILLER, BENJAMIN D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>82</volume><issue>1</issue><spage>258</spage><epage>271</epage><pages>258-271</pages><artnum>258</artnum><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree at least three generating μ-hyperfinite equivalence relations admit μ-measurable matchings. We establish the analogous result for Baire measurable matchings in the locally finite case, and provide a counterexample in the locally countable case.</abstract><cop>Pasadena</cop><pub>Association for Symbolic Logic, Inc</pub><doi>10.1017/jsl.2016.44</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2017-03, Vol.82 (1), p.258-271, Article 258 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_proquest_journals_2787299028 |
source | Cambridge Journals Online; JSTOR Archival Journals and Primary Sources Collection |
subjects | Logic Mathematics Philosophy Structuralism |
title | MEASURABLE PERFECT MATCHINGS FOR ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MEASURABLE%20PERFECT%20MATCHINGS%20FOR%20ACYCLIC%20LOCALLY%20COUNTABLE%20BOREL%20GRAPHS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=CONLEY,%20CLINTON%20T.&rft.date=2017-03-01&rft.volume=82&rft.issue=1&rft.spage=258&rft.epage=271&rft.pages=258-271&rft.artnum=258&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2016.44&rft_dat=%3Cjstor_proqu%3E26358447%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-5017db7be2416a7652346cc3d1b476e7acc6cfc994c5a16876f5c3f98b8a0e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787299028&rft_id=info:pmid/&rft_jstor_id=26358447&rfr_iscdi=true |