Loading…

DECIDABLE ALGEBRAIC FIELDS

We discuss the connection between decidability of a theory of a large algebraic extensions of ℚ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ℚ has a decidable existential theory, then within any fixed algebra...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of symbolic logic 2017-06, Vol.82 (2), p.474-488
Main Authors: JARDEN, MOSHE, SHLAPENTOKH, ALEXANDRA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3
cites cdi_FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3
container_end_page 488
container_issue 2
container_start_page 474
container_title The Journal of symbolic logic
container_volume 82
creator JARDEN, MOSHE
SHLAPENTOKH, ALEXANDRA
description We discuss the connection between decidability of a theory of a large algebraic extensions of ℚ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ℚ has a decidable existential theory, then within any fixed algebraic closure ℚ̃ of ℚ, the field K must be conjugate over ℚ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples σ ∈ Gal(ℚ)e such that the field ℚ̃(σ) is primitive recursive in ℚ̃ and its elementary theory is primitive recursively decidable. Moreover, ℚ̃(σ) is PAC and Gal(ℚ̃(σ)) is isomorphic to the free profinite group on e generators.
doi_str_mv 10.1017/jsl.2017.10
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787299850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26358461</jstor_id><sourcerecordid>26358461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3</originalsourceid><addsrcrecordid>eNo9j01LxDAURYMoWEdX7gRhwKV0TF6a9mXZaTtjoSD4sQ5tkoJltGMys_DfT0rF1bsHDu9yCblldMUoy54Gv1tBCIHOSMRkwmOBmJ6TiFKAOEEGl-TK-4FSKmSCEbkrq6Iu83VTLfNmW61f87pYbuqqKd-uyUXf7ry9-bsL8rGp3ovnuHnZ1kXexBqQH-JOaoROC9OHpiRLteBCssCd5hY6YwFQtCiwZS21GkyvseVoIDNGTHFBHua_ezf-HK0_qGE8uu9QqSDDDKREQYP1OFvajd4726u9-_xq3a9iVE3jVRivpvGBgn0_24M_jO5fhZQLTFLGTxdLUh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787299850</pqid></control><display><type>article</type><title>DECIDABLE ALGEBRAIC FIELDS</title><source>Cambridge Journals Online</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>JARDEN, MOSHE ; SHLAPENTOKH, ALEXANDRA</creator><creatorcontrib>JARDEN, MOSHE ; SHLAPENTOKH, ALEXANDRA</creatorcontrib><description>We discuss the connection between decidability of a theory of a large algebraic extensions of ℚ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ℚ has a decidable existential theory, then within any fixed algebraic closure ℚ̃ of ℚ, the field K must be conjugate over ℚ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples σ ∈ Gal(ℚ)e such that the field ℚ̃(σ) is primitive recursive in ℚ̃ and its elementary theory is primitive recursively decidable. Moreover, ℚ̃(σ) is PAC and Gal(ℚ̃(σ)) is isomorphic to the free profinite group on e generators.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2017.10</identifier><language>eng</language><publisher>Pasadena: Association for Symbolic Logic, Inc</publisher><subject>Algebra ; Algorithms ; Existentialism</subject><ispartof>The Journal of symbolic logic, 2017-06, Vol.82 (2), p.474-488</ispartof><rights>Copyright © 2017 Association for Symbolic Logic</rights><rights>Copyright © The Association for Symbolic Logic 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3</citedby><cites>FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26358461$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26358461$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>JARDEN, MOSHE</creatorcontrib><creatorcontrib>SHLAPENTOKH, ALEXANDRA</creatorcontrib><title>DECIDABLE ALGEBRAIC FIELDS</title><title>The Journal of symbolic logic</title><description>We discuss the connection between decidability of a theory of a large algebraic extensions of ℚ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ℚ has a decidable existential theory, then within any fixed algebraic closure ℚ̃ of ℚ, the field K must be conjugate over ℚ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples σ ∈ Gal(ℚ)e such that the field ℚ̃(σ) is primitive recursive in ℚ̃ and its elementary theory is primitive recursively decidable. Moreover, ℚ̃(σ) is PAC and Gal(ℚ̃(σ)) is isomorphic to the free profinite group on e generators.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Existentialism</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAURYMoWEdX7gRhwKV0TF6a9mXZaTtjoSD4sQ5tkoJltGMys_DfT0rF1bsHDu9yCblldMUoy54Gv1tBCIHOSMRkwmOBmJ6TiFKAOEEGl-TK-4FSKmSCEbkrq6Iu83VTLfNmW61f87pYbuqqKd-uyUXf7ry9-bsL8rGp3ovnuHnZ1kXexBqQH-JOaoROC9OHpiRLteBCssCd5hY6YwFQtCiwZS21GkyvseVoIDNGTHFBHua_ezf-HK0_qGE8uu9QqSDDDKREQYP1OFvajd4726u9-_xq3a9iVE3jVRivpvGBgn0_24M_jO5fhZQLTFLGTxdLUh8</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>JARDEN, MOSHE</creator><creator>SHLAPENTOKH, ALEXANDRA</creator><general>Association for Symbolic Logic, Inc</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>20170601</creationdate><title>DECIDABLE ALGEBRAIC FIELDS</title><author>JARDEN, MOSHE ; SHLAPENTOKH, ALEXANDRA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Existentialism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JARDEN, MOSHE</creatorcontrib><creatorcontrib>SHLAPENTOKH, ALEXANDRA</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JARDEN, MOSHE</au><au>SHLAPENTOKH, ALEXANDRA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DECIDABLE ALGEBRAIC FIELDS</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>82</volume><issue>2</issue><spage>474</spage><epage>488</epage><pages>474-488</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We discuss the connection between decidability of a theory of a large algebraic extensions of ℚ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ℚ has a decidable existential theory, then within any fixed algebraic closure ℚ̃ of ℚ, the field K must be conjugate over ℚ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples σ ∈ Gal(ℚ)e such that the field ℚ̃(σ) is primitive recursive in ℚ̃ and its elementary theory is primitive recursively decidable. Moreover, ℚ̃(σ) is PAC and Gal(ℚ̃(σ)) is isomorphic to the free profinite group on e generators.</abstract><cop>Pasadena</cop><pub>Association for Symbolic Logic, Inc</pub><doi>10.1017/jsl.2017.10</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2017-06, Vol.82 (2), p.474-488
issn 0022-4812
1943-5886
language eng
recordid cdi_proquest_journals_2787299850
source Cambridge Journals Online; JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Algorithms
Existentialism
title DECIDABLE ALGEBRAIC FIELDS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DECIDABLE%20ALGEBRAIC%20FIELDS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=JARDEN,%20MOSHE&rft.date=2017-06-01&rft.volume=82&rft.issue=2&rft.spage=474&rft.epage=488&rft.pages=474-488&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2017.10&rft_dat=%3Cjstor_proqu%3E26358461%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-b9c82bc5df886476c53591c5dbc3e2bde2285a858a1a0ec2dfc8a38d27dd5c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787299850&rft_id=info:pmid/&rft_jstor_id=26358461&rfr_iscdi=true