Loading…

Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump

The flux pumps can realize non-contact excitation of high-temperature superconducting (HTS) magnet and eliminate heat leakage caused by current leads. However, earlier proposed flux pump needs to be installed inside the cryostat, which leads to additional heat load to the cryogenic system. Here, we...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-5
Main Authors: Lei, Yong, Long, Run, Li, Hong, Xiong, Chenling, Yang, Chao, Wu, Chenghuai, Yang, Zhenxuan, Tang, Fuling, Wang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53
cites cdi_FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Lei, Yong
Long, Run
Li, Hong
Xiong, Chenling
Yang, Chao
Wu, Chenghuai
Yang, Zhenxuan
Tang, Fuling
Wang, Wei
description The flux pumps can realize non-contact excitation of high-temperature superconducting (HTS) magnet and eliminate heat leakage caused by current leads. However, earlier proposed flux pump needs to be installed inside the cryostat, which leads to additional heat load to the cryogenic system. Here, we report the successful demonstration of a through-wall linear-motor type flux pump, with its heating parts such as the copper windings completely outside the cryostat, while its generated heat is dissipated in the air and insulated from the cryostat. With an insulation HTS double pancake coil installed in the cryostat and cooled by a G-M cryogenic cooler at 32.6 K, we have demonstrated the injection of direct currents of 42 A into the closed-loop, without the current leads. Thus, the feasibility and reliability of using the linear-motor type flux pump as the power source to excite the HTS through the cryostat is verified, making it possible for future applications such as in MRI and superconducting motors, etc.
doi_str_mv 10.1109/TASC.2023.3252485
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787708320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058574</ieee_id><sourcerecordid>2787708320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcPIHgR8LozOWma7HKUzQkbCqt4I4SkTbeOrqlpC-vb27ldeHX-A99_DnwIPVIyoZRMX5LZJp4AATZhwCGU_AqNKOcyAE759ZAJp4EEYLformn2hNBQhnyEvpOdd912F3zpssTzY1q0ui1chV2ONY5dlXXp3x47VxbVFi-TDV7rbWXbBpt-YFZFZbUP1q51Hid9bfGi7I74ozvU9-gm12VjHy5zjD4X8yReBqv317d4tgpSmIZtYEimM5kbiJgx4TRlhrMIpKDCgsiBkUhmJpIcIpPnJjWGsSxkjFKR8khqzsbo-Xy39u6ns02r9q7z1fBSgZBCEMmADBQ9U6l3TeNtrmpfHLTvFSXqJFGdJKqTRHWROHSezp3CWvuPJ1xyEbJfGa5slA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787708320</pqid></control><display><type>article</type><title>Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lei, Yong ; Long, Run ; Li, Hong ; Xiong, Chenling ; Yang, Chao ; Wu, Chenghuai ; Yang, Zhenxuan ; Tang, Fuling ; Wang, Wei</creator><creatorcontrib>Lei, Yong ; Long, Run ; Li, Hong ; Xiong, Chenling ; Yang, Chao ; Wu, Chenghuai ; Yang, Zhenxuan ; Tang, Fuling ; Wang, Wei</creatorcontrib><description>The flux pumps can realize non-contact excitation of high-temperature superconducting (HTS) magnet and eliminate heat leakage caused by current leads. However, earlier proposed flux pump needs to be installed inside the cryostat, which leads to additional heat load to the cryogenic system. Here, we report the successful demonstration of a through-wall linear-motor type flux pump, with its heating parts such as the copper windings completely outside the cryostat, while its generated heat is dissipated in the air and insulated from the cryostat. With an insulation HTS double pancake coil installed in the cryostat and cooled by a G-M cryogenic cooler at 32.6 K, we have demonstrated the injection of direct currents of 42 A into the closed-loop, without the current leads. Thus, the feasibility and reliability of using the linear-motor type flux pump as the power source to excite the HTS through the cryostat is verified, making it possible for future applications such as in MRI and superconducting motors, etc.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3252485</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Closed loops ; Coils (windings) ; Conduction cooling ; Cooling ; Cryogenic equipment ; Excitation ; Flux pumps ; High temperature ; High-temperature superconductors ; Iron ; Linear-motor type flux pump ; Magnetic cores ; Magnets ; Pancake coils ; Power sources ; Stator cores ; Stator windings ; Superconducting magnets ; Superconductivity ; Through-wall excitation ; YBCO coil</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53</citedby><cites>FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53</cites><orcidid>0000-0001-6796-534X ; 0000-0002-9654-9975 ; 0000-0003-3651-3556 ; 0000-0003-2121-1280 ; 0009-0004-9067-1509 ; 0000-0001-9054-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lei, Yong</creatorcontrib><creatorcontrib>Long, Run</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Xiong, Chenling</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wu, Chenghuai</creatorcontrib><creatorcontrib>Yang, Zhenxuan</creatorcontrib><creatorcontrib>Tang, Fuling</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The flux pumps can realize non-contact excitation of high-temperature superconducting (HTS) magnet and eliminate heat leakage caused by current leads. However, earlier proposed flux pump needs to be installed inside the cryostat, which leads to additional heat load to the cryogenic system. Here, we report the successful demonstration of a through-wall linear-motor type flux pump, with its heating parts such as the copper windings completely outside the cryostat, while its generated heat is dissipated in the air and insulated from the cryostat. With an insulation HTS double pancake coil installed in the cryostat and cooled by a G-M cryogenic cooler at 32.6 K, we have demonstrated the injection of direct currents of 42 A into the closed-loop, without the current leads. Thus, the feasibility and reliability of using the linear-motor type flux pump as the power source to excite the HTS through the cryostat is verified, making it possible for future applications such as in MRI and superconducting motors, etc.</description><subject>Closed loops</subject><subject>Coils (windings)</subject><subject>Conduction cooling</subject><subject>Cooling</subject><subject>Cryogenic equipment</subject><subject>Excitation</subject><subject>Flux pumps</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>Iron</subject><subject>Linear-motor type flux pump</subject><subject>Magnetic cores</subject><subject>Magnets</subject><subject>Pancake coils</subject><subject>Power sources</subject><subject>Stator cores</subject><subject>Stator windings</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Through-wall excitation</subject><subject>YBCO coil</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOKcPIHgR8LozOWma7HKUzQkbCqt4I4SkTbeOrqlpC-vb27ldeHX-A99_DnwIPVIyoZRMX5LZJp4AATZhwCGU_AqNKOcyAE759ZAJp4EEYLformn2hNBQhnyEvpOdd912F3zpssTzY1q0ui1chV2ONY5dlXXp3x47VxbVFi-TDV7rbWXbBpt-YFZFZbUP1q51Hid9bfGi7I74ozvU9-gm12VjHy5zjD4X8yReBqv317d4tgpSmIZtYEimM5kbiJgx4TRlhrMIpKDCgsiBkUhmJpIcIpPnJjWGsSxkjFKR8khqzsbo-Xy39u6ns02r9q7z1fBSgZBCEMmADBQ9U6l3TeNtrmpfHLTvFSXqJFGdJKqTRHWROHSezp3CWvuPJ1xyEbJfGa5slA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lei, Yong</creator><creator>Long, Run</creator><creator>Li, Hong</creator><creator>Xiong, Chenling</creator><creator>Yang, Chao</creator><creator>Wu, Chenghuai</creator><creator>Yang, Zhenxuan</creator><creator>Tang, Fuling</creator><creator>Wang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6796-534X</orcidid><orcidid>https://orcid.org/0000-0002-9654-9975</orcidid><orcidid>https://orcid.org/0000-0003-3651-3556</orcidid><orcidid>https://orcid.org/0000-0003-2121-1280</orcidid><orcidid>https://orcid.org/0009-0004-9067-1509</orcidid><orcidid>https://orcid.org/0000-0001-9054-0227</orcidid></search><sort><creationdate>20230801</creationdate><title>Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump</title><author>Lei, Yong ; Long, Run ; Li, Hong ; Xiong, Chenling ; Yang, Chao ; Wu, Chenghuai ; Yang, Zhenxuan ; Tang, Fuling ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Closed loops</topic><topic>Coils (windings)</topic><topic>Conduction cooling</topic><topic>Cooling</topic><topic>Cryogenic equipment</topic><topic>Excitation</topic><topic>Flux pumps</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>Iron</topic><topic>Linear-motor type flux pump</topic><topic>Magnetic cores</topic><topic>Magnets</topic><topic>Pancake coils</topic><topic>Power sources</topic><topic>Stator cores</topic><topic>Stator windings</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Through-wall excitation</topic><topic>YBCO coil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Yong</creatorcontrib><creatorcontrib>Long, Run</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Xiong, Chenling</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wu, Chenghuai</creatorcontrib><creatorcontrib>Yang, Zhenxuan</creatorcontrib><creatorcontrib>Tang, Fuling</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Yong</au><au>Long, Run</au><au>Li, Hong</au><au>Xiong, Chenling</au><au>Yang, Chao</au><au>Wu, Chenghuai</au><au>Yang, Zhenxuan</au><au>Tang, Fuling</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The flux pumps can realize non-contact excitation of high-temperature superconducting (HTS) magnet and eliminate heat leakage caused by current leads. However, earlier proposed flux pump needs to be installed inside the cryostat, which leads to additional heat load to the cryogenic system. Here, we report the successful demonstration of a through-wall linear-motor type flux pump, with its heating parts such as the copper windings completely outside the cryostat, while its generated heat is dissipated in the air and insulated from the cryostat. With an insulation HTS double pancake coil installed in the cryostat and cooled by a G-M cryogenic cooler at 32.6 K, we have demonstrated the injection of direct currents of 42 A into the closed-loop, without the current leads. Thus, the feasibility and reliability of using the linear-motor type flux pump as the power source to excite the HTS through the cryostat is verified, making it possible for future applications such as in MRI and superconducting motors, etc.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3252485</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6796-534X</orcidid><orcidid>https://orcid.org/0000-0002-9654-9975</orcidid><orcidid>https://orcid.org/0000-0003-3651-3556</orcidid><orcidid>https://orcid.org/0000-0003-2121-1280</orcidid><orcidid>https://orcid.org/0009-0004-9067-1509</orcidid><orcidid>https://orcid.org/0000-0001-9054-0227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2787708320
source IEEE Electronic Library (IEL) Journals
subjects Closed loops
Coils (windings)
Conduction cooling
Cooling
Cryogenic equipment
Excitation
Flux pumps
High temperature
High-temperature superconductors
Iron
Linear-motor type flux pump
Magnetic cores
Magnets
Pancake coils
Power sources
Stator cores
Stator windings
Superconducting magnets
Superconductivity
Through-wall excitation
YBCO coil
title Through-Wall Excitation of a Conduction Cooling HTS Magnets by a Linear-Motor Type Flux Pump
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Through-Wall%20Excitation%20of%20a%20Conduction%20Cooling%20HTS%20Magnets%20by%20a%20Linear-Motor%20Type%20Flux%20Pump&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Lei,%20Yong&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3252485&rft_dat=%3Cproquest_cross%3E2787708320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-b0dad8fb263bb49c3b53628717e27f23068db68526bffbcbb33d433117c568a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787708320&rft_id=info:pmid/&rft_ieee_id=10058574&rfr_iscdi=true