Loading…

Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild

Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and suppor...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Martinez-Maldonado, Roberto, Echeverria, Vanessa, Fernandez-Nieto, Gloria, Yan, Lixiang, Zhao, Linxuan, Riordan, Alfredo, Li, Xinyu, Dix, Samantha, Jaggard, Hollie, Wotherspoon, Rosie, Osborne, Abra, Gašević, Dragan, Simon Buckingham Shum
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Martinez-Maldonado, Roberto
Echeverria, Vanessa
Fernandez-Nieto, Gloria
Yan, Lixiang
Zhao, Linxuan
Riordan, Alfredo
Li, Xinyu
Dix, Samantha
Jaggard, Hollie
Wotherspoon, Rosie
Osborne, Abra
Gašević, Dragan
Simon Buckingham Shum
description Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations "in-the-wild". These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers' tasks and informed consent. These practicalities have been rarely discussed. This paper addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators. The lessons learnt were synthesised into topics related to i) technological/physical aspects of the deployment; ii) multimodal data and interfaces; iii) the design process; iv) participation, ethics and privacy; and v) the sustainability of the deployment.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787736786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787736786</sourcerecordid><originalsourceid>FETCH-proquest_journals_27877367863</originalsourceid><addsrcrecordid>eNqNjN0KgjAYQEcQJOU7DLoe2KbO2-iHCrvrXkZ-1mRutm8Svn1CPUBX5-IczoxEXIgNK1LOFyRGbJMk4bnkWSYicikB0VmkJShvA22866ii18EE3blama_Q9kG3Vpkx6DvSPfTGjR1M_dmy8AT21qZekXmjDEL845Ksj4fb7sR6714DYKhaN_hpghWXhZQil0Uu_qs-t5M8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787736786</pqid></control><display><type>article</type><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild</title><source>Publicly Available Content Database</source><creator>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Riordan, Alfredo ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Gašević, Dragan ; Simon Buckingham Shum</creator><creatorcontrib>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Riordan, Alfredo ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Gašević, Dragan ; Simon Buckingham Shum</creatorcontrib><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations "in-the-wild". These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers' tasks and informed consent. These practicalities have been rarely discussed. This paper addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators. The lessons learnt were synthesised into topics related to i) technological/physical aspects of the deployment; ii) multimodal data and interfaces; iii) the design process; iv) participation, ethics and privacy; and v) the sustainability of the deployment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Informed consent ; Innovations ; Machine learning ; Task complexity</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2787736786?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Riordan, Alfredo</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><creatorcontrib>Simon Buckingham Shum</creatorcontrib><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild</title><title>arXiv.org</title><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations "in-the-wild". These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers' tasks and informed consent. These practicalities have been rarely discussed. This paper addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators. The lessons learnt were synthesised into topics related to i) technological/physical aspects of the deployment; ii) multimodal data and interfaces; iii) the design process; iv) participation, ethics and privacy; and v) the sustainability of the deployment.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Informed consent</subject><subject>Innovations</subject><subject>Machine learning</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjN0KgjAYQEcQJOU7DLoe2KbO2-iHCrvrXkZ-1mRutm8Svn1CPUBX5-IczoxEXIgNK1LOFyRGbJMk4bnkWSYicikB0VmkJShvA22866ii18EE3blama_Q9kG3Vpkx6DvSPfTGjR1M_dmy8AT21qZekXmjDEL845Ksj4fb7sR6714DYKhaN_hpghWXhZQil0Uu_qs-t5M8vg</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Martinez-Maldonado, Roberto</creator><creator>Echeverria, Vanessa</creator><creator>Fernandez-Nieto, Gloria</creator><creator>Yan, Lixiang</creator><creator>Zhao, Linxuan</creator><creator>Riordan, Alfredo</creator><creator>Li, Xinyu</creator><creator>Dix, Samantha</creator><creator>Jaggard, Hollie</creator><creator>Wotherspoon, Rosie</creator><creator>Osborne, Abra</creator><creator>Gašević, Dragan</creator><creator>Simon Buckingham Shum</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230316</creationdate><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild</title><author>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Riordan, Alfredo ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Gašević, Dragan ; Simon Buckingham Shum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27877367863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Informed consent</topic><topic>Innovations</topic><topic>Machine learning</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Riordan, Alfredo</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><creatorcontrib>Simon Buckingham Shum</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Maldonado, Roberto</au><au>Echeverria, Vanessa</au><au>Fernandez-Nieto, Gloria</au><au>Yan, Lixiang</au><au>Zhao, Linxuan</au><au>Riordan, Alfredo</au><au>Li, Xinyu</au><au>Dix, Samantha</au><au>Jaggard, Hollie</au><au>Wotherspoon, Rosie</au><au>Osborne, Abra</au><au>Gašević, Dragan</au><au>Simon Buckingham Shum</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild</atitle><jtitle>arXiv.org</jtitle><date>2023-03-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations "in-the-wild". These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers' tasks and informed consent. These practicalities have been rarely discussed. This paper addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators. The lessons learnt were synthesised into topics related to i) technological/physical aspects of the deployment; ii) multimodal data and interfaces; iii) the design process; iv) participation, ethics and privacy; and v) the sustainability of the deployment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2787736786
source Publicly Available Content Database
subjects Algorithms
Artificial intelligence
Informed consent
Innovations
Machine learning
Task complexity
title Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lessons%20Learnt%20from%20a%20Multimodal%20Learning%20Analytics%20Deployment%20In-the-wild&rft.jtitle=arXiv.org&rft.au=Martinez-Maldonado,%20Roberto&rft.date=2023-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2787736786%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27877367863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787736786&rft_id=info:pmid/&rfr_iscdi=true