Loading…
Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions
The present study proposes a unique MoS2/Fe‐MIL‐88NH2 composite as an adsorbent for methylene blue (MB) from aqueous solutions for the first time. Different physicochemical techniques are utilized to characterize (metal–organic framework [MOF]/transition metal dichalcogenide [TMD]), including elemen...
Saved in:
Published in: | Applied organometallic chemistry 2023-04, Vol.37 (4), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | Applied organometallic chemistry |
container_volume | 37 |
creator | Karami, Kazem Noori, Fatemeh Bayat, Parvaneh Javadian, Salman |
description | The present study proposes a unique MoS2/Fe‐MIL‐88NH2 composite as an adsorbent for methylene blue (MB) from aqueous solutions for the first time. Different physicochemical techniques are utilized to characterize (metal–organic framework [MOF]/transition metal dichalcogenide [TMD]), including elemental analysis, Fourier transform infrared (FT‐IR), field emission scanning electron microscopy (FE‐SEM), zeta potential (ζ) measurement, and Brunauer–Emmett–Teller (BET) theory. The effects of different process factors on MB dye adsorption by composite are examined, including initial dye concentration, adsorbent loading, solution pH, temperature, and dye mixture. Various process parameters encompassing the initial dye concentration, adsorbent loading, solution pH, temperature, and mixture of dyes are investigated, and the equilibrium adsorption capacity towards MB is found up to 370 mg g−1 (when pH = 4.0, contact time is 90 min, and the adsorbent dose is 0.0068 mmol g−1). Experimental results reveal that the adsorption process is highly dependent on adsorbent dosage, initial MB concentration, and aqueous solution temperature. Equilibrium data are fitted onto Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models expressing the MB adsorption phenomena. Moreover, the isotherm data fit Freundlich mathematical models with maximum dye adsorption of 370 mg g−1. Sorption kinetics follows a pseudo‐second‐order model. |
doi_str_mv | 10.1002/aoc.7044 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2787979589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787979589</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2214-34a58a7b034fcd10b7be76cdb2cdbec504313c322280de62506c84ce3d2356b63</originalsourceid><addsrcrecordid>eNotkU1O5DAQRq0RI03DIM0RLM06dMXO7xK1YEDqhgWwjhy70h3GSQW7Myg7jsARuAJX4CicZBxgUVVS6elVSR9jv2I4iQHEUpE-ySFJvrFFDGUZQS7LA7YAkRWRyCD9wQ69vweAMouTBXu92Y9m4tTzDd2I5Tm-Pz1vLtehF8XVheC3TvW-3bcB6HCvLDet3imraYt9a3C5mZeBJrdVfat541SHj-T-vr0ozxXv6R9arqkbKGiQN-T4rt3u7MSV8eSGDzU1s303WeyR13ZEbqbAOuq4ehiRRs892XFm_U_2vVHW4_HXPGJ352e3q4toff3ncnW6jgYh4iSSiUoLldcgk0abGOq8xjzTphahUKeQyFhqKYQowGAmUsh0kWiURsg0qzN5xH5_egdH4Qe_r-5pdH04WYm8yMu8TIsyUNEn9dhanKrBtZ1yUxVDNadRhTSqOY3q9Ho1T_kfSNiFXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787979589</pqid></control><display><type>article</type><title>Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Karami, Kazem ; Noori, Fatemeh ; Bayat, Parvaneh ; Javadian, Salman</creator><creatorcontrib>Karami, Kazem ; Noori, Fatemeh ; Bayat, Parvaneh ; Javadian, Salman</creatorcontrib><description>The present study proposes a unique MoS2/Fe‐MIL‐88NH2 composite as an adsorbent for methylene blue (MB) from aqueous solutions for the first time. Different physicochemical techniques are utilized to characterize (metal–organic framework [MOF]/transition metal dichalcogenide [TMD]), including elemental analysis, Fourier transform infrared (FT‐IR), field emission scanning electron microscopy (FE‐SEM), zeta potential (ζ) measurement, and Brunauer–Emmett–Teller (BET) theory. The effects of different process factors on MB dye adsorption by composite are examined, including initial dye concentration, adsorbent loading, solution pH, temperature, and dye mixture. Various process parameters encompassing the initial dye concentration, adsorbent loading, solution pH, temperature, and mixture of dyes are investigated, and the equilibrium adsorption capacity towards MB is found up to 370 mg g−1 (when pH = 4.0, contact time is 90 min, and the adsorbent dose is 0.0068 mmol g−1). Experimental results reveal that the adsorption process is highly dependent on adsorbent dosage, initial MB concentration, and aqueous solution temperature. Equilibrium data are fitted onto Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models expressing the MB adsorption phenomena. Moreover, the isotherm data fit Freundlich mathematical models with maximum dye adsorption of 370 mg g−1. Sorption kinetics follows a pseudo‐second‐order model.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7044</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Adsorbents ; Adsorption ; Aqueous solutions ; Chalcogenides ; Chemistry ; Dyes ; Emission analysis ; Field emission microscopy ; Fourier transforms ; hydrothermal method ; Infrared analysis ; Iron ; Mathematical models ; Metal-organic frameworks ; Metals ; metal–organic frameworks (MOFs) ; Methylene blue ; Mixtures ; Molybdenum disulfide ; Process parameters ; Transition metal compounds ; transition metal dichalcogenide ; Zeta potential</subject><ispartof>Applied organometallic chemistry, 2023-04, Vol.37 (4), p.n/a</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4488-1148 ; 0000-0003-2021-8616 ; 0000-0001-9878-3012 ; 0000-0002-3610-8289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karami, Kazem</creatorcontrib><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Bayat, Parvaneh</creatorcontrib><creatorcontrib>Javadian, Salman</creatorcontrib><title>Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions</title><title>Applied organometallic chemistry</title><description>The present study proposes a unique MoS2/Fe‐MIL‐88NH2 composite as an adsorbent for methylene blue (MB) from aqueous solutions for the first time. Different physicochemical techniques are utilized to characterize (metal–organic framework [MOF]/transition metal dichalcogenide [TMD]), including elemental analysis, Fourier transform infrared (FT‐IR), field emission scanning electron microscopy (FE‐SEM), zeta potential (ζ) measurement, and Brunauer–Emmett–Teller (BET) theory. The effects of different process factors on MB dye adsorption by composite are examined, including initial dye concentration, adsorbent loading, solution pH, temperature, and dye mixture. Various process parameters encompassing the initial dye concentration, adsorbent loading, solution pH, temperature, and mixture of dyes are investigated, and the equilibrium adsorption capacity towards MB is found up to 370 mg g−1 (when pH = 4.0, contact time is 90 min, and the adsorbent dose is 0.0068 mmol g−1). Experimental results reveal that the adsorption process is highly dependent on adsorbent dosage, initial MB concentration, and aqueous solution temperature. Equilibrium data are fitted onto Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models expressing the MB adsorption phenomena. Moreover, the isotherm data fit Freundlich mathematical models with maximum dye adsorption of 370 mg g−1. Sorption kinetics follows a pseudo‐second‐order model.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Chalcogenides</subject><subject>Chemistry</subject><subject>Dyes</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>hydrothermal method</subject><subject>Infrared analysis</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>metal–organic frameworks (MOFs)</subject><subject>Methylene blue</subject><subject>Mixtures</subject><subject>Molybdenum disulfide</subject><subject>Process parameters</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenide</subject><subject>Zeta potential</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkU1O5DAQRq0RI03DIM0RLM06dMXO7xK1YEDqhgWwjhy70h3GSQW7Myg7jsARuAJX4CicZBxgUVVS6elVSR9jv2I4iQHEUpE-ySFJvrFFDGUZQS7LA7YAkRWRyCD9wQ69vweAMouTBXu92Y9m4tTzDd2I5Tm-Pz1vLtehF8XVheC3TvW-3bcB6HCvLDet3imraYt9a3C5mZeBJrdVfat541SHj-T-vr0ozxXv6R9arqkbKGiQN-T4rt3u7MSV8eSGDzU1s303WeyR13ZEbqbAOuq4ehiRRs892XFm_U_2vVHW4_HXPGJ352e3q4toff3ncnW6jgYh4iSSiUoLldcgk0abGOq8xjzTphahUKeQyFhqKYQowGAmUsh0kWiURsg0qzN5xH5_egdH4Qe_r-5pdH04WYm8yMu8TIsyUNEn9dhanKrBtZ1yUxVDNadRhTSqOY3q9Ho1T_kfSNiFXg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Karami, Kazem</creator><creator>Noori, Fatemeh</creator><creator>Bayat, Parvaneh</creator><creator>Javadian, Salman</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4488-1148</orcidid><orcidid>https://orcid.org/0000-0003-2021-8616</orcidid><orcidid>https://orcid.org/0000-0001-9878-3012</orcidid><orcidid>https://orcid.org/0000-0002-3610-8289</orcidid></search><sort><creationdate>202304</creationdate><title>Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions</title><author>Karami, Kazem ; Noori, Fatemeh ; Bayat, Parvaneh ; Javadian, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2214-34a58a7b034fcd10b7be76cdb2cdbec504313c322280de62506c84ce3d2356b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Chalcogenides</topic><topic>Chemistry</topic><topic>Dyes</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>hydrothermal method</topic><topic>Infrared analysis</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>metal–organic frameworks (MOFs)</topic><topic>Methylene blue</topic><topic>Mixtures</topic><topic>Molybdenum disulfide</topic><topic>Process parameters</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenide</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Kazem</creatorcontrib><creatorcontrib>Noori, Fatemeh</creatorcontrib><creatorcontrib>Bayat, Parvaneh</creatorcontrib><creatorcontrib>Javadian, Salman</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Kazem</au><au>Noori, Fatemeh</au><au>Bayat, Parvaneh</au><au>Javadian, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2023-04</date><risdate>2023</risdate><volume>37</volume><issue>4</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>The present study proposes a unique MoS2/Fe‐MIL‐88NH2 composite as an adsorbent for methylene blue (MB) from aqueous solutions for the first time. Different physicochemical techniques are utilized to characterize (metal–organic framework [MOF]/transition metal dichalcogenide [TMD]), including elemental analysis, Fourier transform infrared (FT‐IR), field emission scanning electron microscopy (FE‐SEM), zeta potential (ζ) measurement, and Brunauer–Emmett–Teller (BET) theory. The effects of different process factors on MB dye adsorption by composite are examined, including initial dye concentration, adsorbent loading, solution pH, temperature, and dye mixture. Various process parameters encompassing the initial dye concentration, adsorbent loading, solution pH, temperature, and mixture of dyes are investigated, and the equilibrium adsorption capacity towards MB is found up to 370 mg g−1 (when pH = 4.0, contact time is 90 min, and the adsorbent dose is 0.0068 mmol g−1). Experimental results reveal that the adsorption process is highly dependent on adsorbent dosage, initial MB concentration, and aqueous solution temperature. Equilibrium data are fitted onto Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models expressing the MB adsorption phenomena. Moreover, the isotherm data fit Freundlich mathematical models with maximum dye adsorption of 370 mg g−1. Sorption kinetics follows a pseudo‐second‐order model.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7044</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4488-1148</orcidid><orcidid>https://orcid.org/0000-0003-2021-8616</orcidid><orcidid>https://orcid.org/0000-0001-9878-3012</orcidid><orcidid>https://orcid.org/0000-0002-3610-8289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2605 |
ispartof | Applied organometallic chemistry, 2023-04, Vol.37 (4), p.n/a |
issn | 0268-2605 1099-0739 |
language | eng |
recordid | cdi_proquest_journals_2787979589 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adsorbents Adsorption Aqueous solutions Chalcogenides Chemistry Dyes Emission analysis Field emission microscopy Fourier transforms hydrothermal method Infrared analysis Iron Mathematical models Metal-organic frameworks Metals metal–organic frameworks (MOFs) Methylene blue Mixtures Molybdenum disulfide Process parameters Transition metal compounds transition metal dichalcogenide Zeta potential |
title | Study on MoS2/Fe‐MIL‐88NH2 Transition metal dichalcogenide/Metal‐organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20MoS2/Fe%E2%80%90MIL%E2%80%9088NH2%20Transition%20metal%20dichalcogenide/Metal%E2%80%90organic%20framework%C2%A0as%20a%20novel%20composite%20for%20highly%20adsorption%20of%20methylene%20blue%20dye%20from%20aqueous%20solutions&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Karami,%20Kazem&rft.date=2023-04&rft.volume=37&rft.issue=4&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7044&rft_dat=%3Cproquest_wiley%3E2787979589%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2214-34a58a7b034fcd10b7be76cdb2cdbec504313c322280de62506c84ce3d2356b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787979589&rft_id=info:pmid/&rfr_iscdi=true |