Loading…

Colour discrimination scores combining colour fidelity and gamut area characteristics

This paper investigated colour discrimination based on current available indexes, and predictors were proposed for global and targeted colour scenarios. Thirty participants conducted the Farnsworth–Munsell 100 hue test under 21 lighting conditions. The experiment results revealed that the distributi...

Full description

Saved in:
Bibliographic Details
Published in:Lighting research & technology (London, England : 2001) England : 2001), 2023-04, Vol.55 (2), p.129-154
Main Authors: Hou, D, Ni, Y, Wang, Y, Weirich, C, Shen, H, Lin, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-d6fb70e54ae66cd0f6ba2dc8b299a2ffdbb8d87674b3928885e99a2b949d172f3
container_end_page 154
container_issue 2
container_start_page 129
container_title Lighting research & technology (London, England : 2001)
container_volume 55
creator Hou, D
Ni, Y
Wang, Y
Weirich, C
Shen, H
Lin, Y
description This paper investigated colour discrimination based on current available indexes, and predictors were proposed for global and targeted colour scenarios. Thirty participants conducted the Farnsworth–Munsell 100 hue test under 21 lighting conditions. The experiment results revealed that the distribution of total error score (TES) and adjusted total error score (TESadj) showed arc shapes centred on the optimal point (100, 100) in both Rf–Rg and colour rendering index–gamut area index coordinate systems. On this basis, global colour discrimination scores, CDS1 and CDS2, based on the colour fidelity and colour gamut characteristics, were proposed. The results demonstrated that both CDS1 (r = 0.82, p < 0.001) and CDS2 (r = 0.81, p < 0.001) provided good linear correlations with TES, and CDS1 (r = 0.75, p < 0.001) and CDS2 (r = 0.77, p < 0.001) also exhibited a good linear correlation with TESadj. Furthermore, the global colour gamut was divided into four local colour spaces (red–yellow, yellow–green, green–blue and blue–red), and the CDSs in the local gamut (CDSlocal and CDSadj,local) were constructed using the local colour properties, including Rcs,local, Rhs,local and Rf,local. The linear regression results demonstrated that CDSlocal ( r ¯ = 0 . 79 ) and CDSadj,local ( r ¯ = 0 . 78 ) can be effective colour discrimination predictors for the targeted colour scenarios.
doi_str_mv 10.1177/14771535221094277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788723393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14771535221094277</sage_id><sourcerecordid>2788723393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d6fb70e54ae66cd0f6ba2dc8b299a2ffdbb8d87674b3928885e99a2b949d172f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPW_Oxu0mOUtQKBS_2vEy-akq7qUl66L931xY8iKd5zLz3ZuYhdE_JjFIhHmktBG14wxglqmZCXKDJ2KuI4vLyjEfCNbrJeUMIlYTzCVrN4zYeErYhmxR2oYcSYo-zicllbOJOhz706wH90HywbhvKEUNv8Rp2h4IhOcDmExKY4lLIJZh8i648bLO7O9cpWr08f8wX1fL99W3-tKwMa-tS2dZrQVxTg2tbY4lvNTBrpGZKAfPeai2tFK2oNVdMStm4caBVrSwVzPMpejj57lP8Orhcus1wZT-s7JiQUjDOFR9Y9MQyKeacnO_2w6uQjh0l3Zhe9ye9QTM7aTKs3a_r_4JvA2dwog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788723393</pqid></control><display><type>article</type><title>Colour discrimination scores combining colour fidelity and gamut area characteristics</title><source>Sage Journals Online</source><creator>Hou, D ; Ni, Y ; Wang, Y ; Weirich, C ; Shen, H ; Lin, Y</creator><creatorcontrib>Hou, D ; Ni, Y ; Wang, Y ; Weirich, C ; Shen, H ; Lin, Y</creatorcontrib><description>This paper investigated colour discrimination based on current available indexes, and predictors were proposed for global and targeted colour scenarios. Thirty participants conducted the Farnsworth–Munsell 100 hue test under 21 lighting conditions. The experiment results revealed that the distribution of total error score (TES) and adjusted total error score (TESadj) showed arc shapes centred on the optimal point (100, 100) in both Rf–Rg and colour rendering index–gamut area index coordinate systems. On this basis, global colour discrimination scores, CDS1 and CDS2, based on the colour fidelity and colour gamut characteristics, were proposed. The results demonstrated that both CDS1 (r = 0.82, p &lt; 0.001) and CDS2 (r = 0.81, p &lt; 0.001) provided good linear correlations with TES, and CDS1 (r = 0.75, p &lt; 0.001) and CDS2 (r = 0.77, p &lt; 0.001) also exhibited a good linear correlation with TESadj. Furthermore, the global colour gamut was divided into four local colour spaces (red–yellow, yellow–green, green–blue and blue–red), and the CDSs in the local gamut (CDSlocal and CDSadj,local) were constructed using the local colour properties, including Rcs,local, Rhs,local and Rf,local. The linear regression results demonstrated that CDSlocal ( r ¯ = 0 . 79 ) and CDSadj,local ( r ¯ = 0 . 78 ) can be effective colour discrimination predictors for the targeted colour scenarios.</description><identifier>ISSN: 1477-1535</identifier><identifier>EISSN: 1477-0938</identifier><identifier>DOI: 10.1177/14771535221094277</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accuracy ; Color ; Coordinates</subject><ispartof>Lighting research &amp; technology (London, England : 2001), 2023-04, Vol.55 (2), p.129-154</ispartof><rights>The Chartered Institution of Building Services Engineers 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-d6fb70e54ae66cd0f6ba2dc8b299a2ffdbb8d87674b3928885e99a2b949d172f3</cites><orcidid>0000-0002-9208-7371 ; 0000-0003-1859-1411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids></links><search><creatorcontrib>Hou, D</creatorcontrib><creatorcontrib>Ni, Y</creatorcontrib><creatorcontrib>Wang, Y</creatorcontrib><creatorcontrib>Weirich, C</creatorcontrib><creatorcontrib>Shen, H</creatorcontrib><creatorcontrib>Lin, Y</creatorcontrib><title>Colour discrimination scores combining colour fidelity and gamut area characteristics</title><title>Lighting research &amp; technology (London, England : 2001)</title><description>This paper investigated colour discrimination based on current available indexes, and predictors were proposed for global and targeted colour scenarios. Thirty participants conducted the Farnsworth–Munsell 100 hue test under 21 lighting conditions. The experiment results revealed that the distribution of total error score (TES) and adjusted total error score (TESadj) showed arc shapes centred on the optimal point (100, 100) in both Rf–Rg and colour rendering index–gamut area index coordinate systems. On this basis, global colour discrimination scores, CDS1 and CDS2, based on the colour fidelity and colour gamut characteristics, were proposed. The results demonstrated that both CDS1 (r = 0.82, p &lt; 0.001) and CDS2 (r = 0.81, p &lt; 0.001) provided good linear correlations with TES, and CDS1 (r = 0.75, p &lt; 0.001) and CDS2 (r = 0.77, p &lt; 0.001) also exhibited a good linear correlation with TESadj. Furthermore, the global colour gamut was divided into four local colour spaces (red–yellow, yellow–green, green–blue and blue–red), and the CDSs in the local gamut (CDSlocal and CDSadj,local) were constructed using the local colour properties, including Rcs,local, Rhs,local and Rf,local. The linear regression results demonstrated that CDSlocal ( r ¯ = 0 . 79 ) and CDSadj,local ( r ¯ = 0 . 78 ) can be effective colour discrimination predictors for the targeted colour scenarios.</description><subject>Accuracy</subject><subject>Color</subject><subject>Coordinates</subject><issn>1477-1535</issn><issn>1477-0938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPW_Oxu0mOUtQKBS_2vEy-akq7qUl66L931xY8iKd5zLz3ZuYhdE_JjFIhHmktBG14wxglqmZCXKDJ2KuI4vLyjEfCNbrJeUMIlYTzCVrN4zYeErYhmxR2oYcSYo-zicllbOJOhz706wH90HywbhvKEUNv8Rp2h4IhOcDmExKY4lLIJZh8i648bLO7O9cpWr08f8wX1fL99W3-tKwMa-tS2dZrQVxTg2tbY4lvNTBrpGZKAfPeai2tFK2oNVdMStm4caBVrSwVzPMpejj57lP8Orhcus1wZT-s7JiQUjDOFR9Y9MQyKeacnO_2w6uQjh0l3Zhe9ye9QTM7aTKs3a_r_4JvA2dwog</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Hou, D</creator><creator>Ni, Y</creator><creator>Wang, Y</creator><creator>Weirich, C</creator><creator>Shen, H</creator><creator>Lin, Y</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9208-7371</orcidid><orcidid>https://orcid.org/0000-0003-1859-1411</orcidid></search><sort><creationdate>202304</creationdate><title>Colour discrimination scores combining colour fidelity and gamut area characteristics</title><author>Hou, D ; Ni, Y ; Wang, Y ; Weirich, C ; Shen, H ; Lin, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d6fb70e54ae66cd0f6ba2dc8b299a2ffdbb8d87674b3928885e99a2b949d172f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Color</topic><topic>Coordinates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, D</creatorcontrib><creatorcontrib>Ni, Y</creatorcontrib><creatorcontrib>Wang, Y</creatorcontrib><creatorcontrib>Weirich, C</creatorcontrib><creatorcontrib>Shen, H</creatorcontrib><creatorcontrib>Lin, Y</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lighting research &amp; technology (London, England : 2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, D</au><au>Ni, Y</au><au>Wang, Y</au><au>Weirich, C</au><au>Shen, H</au><au>Lin, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colour discrimination scores combining colour fidelity and gamut area characteristics</atitle><jtitle>Lighting research &amp; technology (London, England : 2001)</jtitle><date>2023-04</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>129</spage><epage>154</epage><pages>129-154</pages><issn>1477-1535</issn><eissn>1477-0938</eissn><abstract>This paper investigated colour discrimination based on current available indexes, and predictors were proposed for global and targeted colour scenarios. Thirty participants conducted the Farnsworth–Munsell 100 hue test under 21 lighting conditions. The experiment results revealed that the distribution of total error score (TES) and adjusted total error score (TESadj) showed arc shapes centred on the optimal point (100, 100) in both Rf–Rg and colour rendering index–gamut area index coordinate systems. On this basis, global colour discrimination scores, CDS1 and CDS2, based on the colour fidelity and colour gamut characteristics, were proposed. The results demonstrated that both CDS1 (r = 0.82, p &lt; 0.001) and CDS2 (r = 0.81, p &lt; 0.001) provided good linear correlations with TES, and CDS1 (r = 0.75, p &lt; 0.001) and CDS2 (r = 0.77, p &lt; 0.001) also exhibited a good linear correlation with TESadj. Furthermore, the global colour gamut was divided into four local colour spaces (red–yellow, yellow–green, green–blue and blue–red), and the CDSs in the local gamut (CDSlocal and CDSadj,local) were constructed using the local colour properties, including Rcs,local, Rhs,local and Rf,local. The linear regression results demonstrated that CDSlocal ( r ¯ = 0 . 79 ) and CDSadj,local ( r ¯ = 0 . 78 ) can be effective colour discrimination predictors for the targeted colour scenarios.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14771535221094277</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9208-7371</orcidid><orcidid>https://orcid.org/0000-0003-1859-1411</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-1535
ispartof Lighting research & technology (London, England : 2001), 2023-04, Vol.55 (2), p.129-154
issn 1477-1535
1477-0938
language eng
recordid cdi_proquest_journals_2788723393
source Sage Journals Online
subjects Accuracy
Color
Coordinates
title Colour discrimination scores combining colour fidelity and gamut area characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colour%20discrimination%20scores%20combining%20colour%20fidelity%20and%20gamut%20area%20characteristics&rft.jtitle=Lighting%20research%20&%20technology%20(London,%20England%20:%202001)&rft.au=Hou,%20D&rft.date=2023-04&rft.volume=55&rft.issue=2&rft.spage=129&rft.epage=154&rft.pages=129-154&rft.issn=1477-1535&rft.eissn=1477-0938&rft_id=info:doi/10.1177/14771535221094277&rft_dat=%3Cproquest_cross%3E2788723393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-d6fb70e54ae66cd0f6ba2dc8b299a2ffdbb8d87674b3928885e99a2b949d172f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788723393&rft_id=info:pmid/&rft_sage_id=10.1177_14771535221094277&rfr_iscdi=true