Loading…

QUBO-inspired Molecular Fingerprint for Chemical Property Prediction

Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction finger...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Yawata, Koichiro, Osakabe, Yoshihiro, Okuyama, Takuya, Asahara, Akinori
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yawata, Koichiro
Osakabe, Yoshihiro
Okuyama, Takuya
Asahara, Akinori
description Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.
doi_str_mv 10.48550/arxiv.2303.10179
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788996649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788996649</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-QHcB14kz_9yXGq0KlVqo6zKZi06JmThJRN_egK6-czbnQ2hNcMUU5_ja5O_4VQHFtCKYSH2GFkApKRUDuECrYThhjEFI4Jwu0N3-9XZXxm7oY_aueE6tt1NrcrGJ3ZvPfY7dWISUi_rdf0Rr2uIlp97n8WcG76IdY-ou0Xkw7eBX_7tEh839oX4st7uHp_pmWxoOuhSaY-dw02DcmIaJ4LQFoSS1RDoHilM3ixJBCXBEheAF86qhhAIzVgq6RFd_2T6nz8kP4_GUptzNj0eQSmktBNP0F7U7TBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788996649</pqid></control><display><type>article</type><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</creator><creatorcontrib>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</creatorcontrib><description>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2303.10179</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical fingerprinting ; Chemical properties ; Optimization ; Predictions</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2788996649?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Yawata, Koichiro</creatorcontrib><creatorcontrib>Osakabe, Yoshihiro</creatorcontrib><creatorcontrib>Okuyama, Takuya</creatorcontrib><creatorcontrib>Asahara, Akinori</creatorcontrib><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><title>arXiv.org</title><description>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</description><subject>Chemical fingerprinting</subject><subject>Chemical properties</subject><subject>Optimization</subject><subject>Predictions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-QHcB14kz_9yXGq0KlVqo6zKZi06JmThJRN_egK6-czbnQ2hNcMUU5_ja5O_4VQHFtCKYSH2GFkApKRUDuECrYThhjEFI4Jwu0N3-9XZXxm7oY_aueE6tt1NrcrGJ3ZvPfY7dWISUi_rdf0Rr2uIlp97n8WcG76IdY-ou0Xkw7eBX_7tEh839oX4st7uHp_pmWxoOuhSaY-dw02DcmIaJ4LQFoSS1RDoHilM3ixJBCXBEheAF86qhhAIzVgq6RFd_2T6nz8kP4_GUptzNj0eQSmktBNP0F7U7TBY</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Yawata, Koichiro</creator><creator>Osakabe, Yoshihiro</creator><creator>Okuyama, Takuya</creator><creator>Asahara, Akinori</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230317</creationdate><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><author>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical fingerprinting</topic><topic>Chemical properties</topic><topic>Optimization</topic><topic>Predictions</topic><toplevel>online_resources</toplevel><creatorcontrib>Yawata, Koichiro</creatorcontrib><creatorcontrib>Osakabe, Yoshihiro</creatorcontrib><creatorcontrib>Okuyama, Takuya</creatorcontrib><creatorcontrib>Asahara, Akinori</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yawata, Koichiro</au><au>Osakabe, Yoshihiro</au><au>Okuyama, Takuya</au><au>Asahara, Akinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</atitle><jtitle>arXiv.org</jtitle><date>2023-03-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2303.10179</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2788996649
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Chemical fingerprinting
Chemical properties
Optimization
Predictions
title QUBO-inspired Molecular Fingerprint for Chemical Property Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUBO-inspired%20Molecular%20Fingerprint%20for%20Chemical%20Property%20Prediction&rft.jtitle=arXiv.org&rft.au=Yawata,%20Koichiro&rft.date=2023-03-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2303.10179&rft_dat=%3Cproquest%3E2788996649%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788996649&rft_id=info:pmid/&rfr_iscdi=true