Loading…
QUBO-inspired Molecular Fingerprint for Chemical Property Prediction
Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction finger...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yawata, Koichiro Osakabe, Yoshihiro Okuyama, Takuya Asahara, Akinori |
description | Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset. |
doi_str_mv | 10.48550/arxiv.2303.10179 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788996649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788996649</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-QHcB14kz_9yXGq0KlVqo6zKZi06JmThJRN_egK6-czbnQ2hNcMUU5_ja5O_4VQHFtCKYSH2GFkApKRUDuECrYThhjEFI4Jwu0N3-9XZXxm7oY_aueE6tt1NrcrGJ3ZvPfY7dWISUi_rdf0Rr2uIlp97n8WcG76IdY-ou0Xkw7eBX_7tEh839oX4st7uHp_pmWxoOuhSaY-dw02DcmIaJ4LQFoSS1RDoHilM3ixJBCXBEheAF86qhhAIzVgq6RFd_2T6nz8kP4_GUptzNj0eQSmktBNP0F7U7TBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788996649</pqid></control><display><type>article</type><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</creator><creatorcontrib>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</creatorcontrib><description>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2303.10179</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical fingerprinting ; Chemical properties ; Optimization ; Predictions</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2788996649?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Yawata, Koichiro</creatorcontrib><creatorcontrib>Osakabe, Yoshihiro</creatorcontrib><creatorcontrib>Okuyama, Takuya</creatorcontrib><creatorcontrib>Asahara, Akinori</creatorcontrib><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><title>arXiv.org</title><description>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</description><subject>Chemical fingerprinting</subject><subject>Chemical properties</subject><subject>Optimization</subject><subject>Predictions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-QHcB14kz_9yXGq0KlVqo6zKZi06JmThJRN_egK6-czbnQ2hNcMUU5_ja5O_4VQHFtCKYSH2GFkApKRUDuECrYThhjEFI4Jwu0N3-9XZXxm7oY_aueE6tt1NrcrGJ3ZvPfY7dWISUi_rdf0Rr2uIlp97n8WcG76IdY-ou0Xkw7eBX_7tEh839oX4st7uHp_pmWxoOuhSaY-dw02DcmIaJ4LQFoSS1RDoHilM3ixJBCXBEheAF86qhhAIzVgq6RFd_2T6nz8kP4_GUptzNj0eQSmktBNP0F7U7TBY</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Yawata, Koichiro</creator><creator>Osakabe, Yoshihiro</creator><creator>Okuyama, Takuya</creator><creator>Asahara, Akinori</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230317</creationdate><title>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</title><author>Yawata, Koichiro ; Osakabe, Yoshihiro ; Okuyama, Takuya ; Asahara, Akinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical fingerprinting</topic><topic>Chemical properties</topic><topic>Optimization</topic><topic>Predictions</topic><toplevel>online_resources</toplevel><creatorcontrib>Yawata, Koichiro</creatorcontrib><creatorcontrib>Osakabe, Yoshihiro</creatorcontrib><creatorcontrib>Okuyama, Takuya</creatorcontrib><creatorcontrib>Asahara, Akinori</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yawata, Koichiro</au><au>Osakabe, Yoshihiro</au><au>Okuyama, Takuya</au><au>Asahara, Akinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUBO-inspired Molecular Fingerprint for Chemical Property Prediction</atitle><jtitle>arXiv.org</jtitle><date>2023-03-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2303.10179</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2788996649 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Chemical fingerprinting Chemical properties Optimization Predictions |
title | QUBO-inspired Molecular Fingerprint for Chemical Property Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUBO-inspired%20Molecular%20Fingerprint%20for%20Chemical%20Property%20Prediction&rft.jtitle=arXiv.org&rft.au=Yawata,%20Koichiro&rft.date=2023-03-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2303.10179&rft_dat=%3Cproquest%3E2788996649%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-6950dd0bb00bab46fd9c26873c17dd2853d87386f862d18ffe64e8b31324ac763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788996649&rft_id=info:pmid/&rfr_iscdi=true |