Loading…

Brain Principles Programming

The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalizat...

Full description

Saved in:
Bibliographic Details
Published in:Doklady. Mathematics 2022-12, Vol.106 (Suppl 1), p.S101-S112
Main Authors: Vityaev, E., Kolonin, A., Kurpatov, A., Molchanov, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343
container_end_page S112
container_issue Suppl 1
container_start_page S101
container_title Doklady. Mathematics
container_volume 106
creator Vityaev, E.
Kolonin, A.
Kurpatov, A.
Molchanov, A.
description The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.
doi_str_mv 10.1134/S1064562422060217
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789262565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789262565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</originalsourceid><addsrcrecordid>eNp1kEtLBDEQhIMouK7-AMGD4Hm0u_OYyVEXX7CgoJ5DkskMs-w8THYP_nuzrOBBPHVBfVUNxdg5wjUiFzdvCEpIRYIIFBCWB2yGkmNRcUWHWWe72PnH7CSlFYCQBDBjF3fRdsPla-wG303rkLIc22j7vhvaU3bU2HUKZz93zj4e7t8XT8Xy5fF5cbssPEfcFFIrr53nobbQYB2c82AF-saDK3nwZWV1KEn7oJCcd1pb0rVraqEbVFzwObva905x_NyGtDGrcRuH_NJQWWlSJJXMFO4pH8eUYmjMFLvexi-DYHYjmD8j5AztMymzQxvib_P_oW9NaF0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789262565</pqid></control><display><type>article</type><title>Brain Principles Programming</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</creator><creatorcontrib>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</creatorcontrib><description>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562422060217</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Advanced Studies in Artificial Intelligence and Machine Learning ; Algorithms ; Artificial intelligence ; Brain ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Principles</subject><ispartof>Doklady. Mathematics, 2022-12, Vol.106 (Suppl 1), p.S101-S112</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 106, Suppl. 1, pp. S101–S112. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 508, pp. 111–127.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</cites><orcidid>0000-0002-5651-6781 ; 0000-0003-0197-8871 ; 0000-0003-4180-2870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Kolonin, A.</creatorcontrib><creatorcontrib>Kurpatov, A.</creatorcontrib><creatorcontrib>Molchanov, A.</creatorcontrib><title>Brain Principles Programming</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</description><subject>Advanced Studies in Artificial Intelligence and Machine Learning</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLBDEQhIMouK7-AMGD4Hm0u_OYyVEXX7CgoJ5DkskMs-w8THYP_nuzrOBBPHVBfVUNxdg5wjUiFzdvCEpIRYIIFBCWB2yGkmNRcUWHWWe72PnH7CSlFYCQBDBjF3fRdsPla-wG303rkLIc22j7vhvaU3bU2HUKZz93zj4e7t8XT8Xy5fF5cbssPEfcFFIrr53nobbQYB2c82AF-saDK3nwZWV1KEn7oJCcd1pb0rVraqEbVFzwObva905x_NyGtDGrcRuH_NJQWWlSJJXMFO4pH8eUYmjMFLvexi-DYHYjmD8j5AztMymzQxvib_P_oW9NaF0A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vityaev, E.</creator><creator>Kolonin, A.</creator><creator>Kurpatov, A.</creator><creator>Molchanov, A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5651-6781</orcidid><orcidid>https://orcid.org/0000-0003-0197-8871</orcidid><orcidid>https://orcid.org/0000-0003-4180-2870</orcidid></search><sort><creationdate>20221201</creationdate><title>Brain Principles Programming</title><author>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced Studies in Artificial Intelligence and Machine Learning</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Kolonin, A.</creatorcontrib><creatorcontrib>Kurpatov, A.</creatorcontrib><creatorcontrib>Molchanov, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vityaev, E.</au><au>Kolonin, A.</au><au>Kurpatov, A.</au><au>Molchanov, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Principles Programming</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>106</volume><issue>Suppl 1</issue><spage>S101</spage><epage>S112</epage><pages>S101-S112</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562422060217</doi><orcidid>https://orcid.org/0000-0002-5651-6781</orcidid><orcidid>https://orcid.org/0000-0003-0197-8871</orcidid><orcidid>https://orcid.org/0000-0003-4180-2870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2022-12, Vol.106 (Suppl 1), p.S101-S112
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2789262565
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Advanced Studies in Artificial Intelligence and Machine Learning
Algorithms
Artificial intelligence
Brain
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Principles
title Brain Principles Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Principles%20Programming&rft.jtitle=Doklady.%20Mathematics&rft.au=Vityaev,%20E.&rft.date=2022-12-01&rft.volume=106&rft.issue=Suppl%201&rft.spage=S101&rft.epage=S112&rft.pages=S101-S112&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562422060217&rft_dat=%3Cproquest_cross%3E2789262565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789262565&rft_id=info:pmid/&rfr_iscdi=true