Loading…
Brain Principles Programming
The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalizat...
Saved in:
Published in: | Doklady. Mathematics 2022-12, Vol.106 (Suppl 1), p.S101-S112 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343 |
container_end_page | S112 |
container_issue | Suppl 1 |
container_start_page | S101 |
container_title | Doklady. Mathematics |
container_volume | 106 |
creator | Vityaev, E. Kolonin, A. Kurpatov, A. Molchanov, A. |
description | The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation. |
doi_str_mv | 10.1134/S1064562422060217 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789262565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789262565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</originalsourceid><addsrcrecordid>eNp1kEtLBDEQhIMouK7-AMGD4Hm0u_OYyVEXX7CgoJ5DkskMs-w8THYP_nuzrOBBPHVBfVUNxdg5wjUiFzdvCEpIRYIIFBCWB2yGkmNRcUWHWWe72PnH7CSlFYCQBDBjF3fRdsPla-wG303rkLIc22j7vhvaU3bU2HUKZz93zj4e7t8XT8Xy5fF5cbssPEfcFFIrr53nobbQYB2c82AF-saDK3nwZWV1KEn7oJCcd1pb0rVraqEbVFzwObva905x_NyGtDGrcRuH_NJQWWlSJJXMFO4pH8eUYmjMFLvexi-DYHYjmD8j5AztMymzQxvib_P_oW9NaF0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789262565</pqid></control><display><type>article</type><title>Brain Principles Programming</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</creator><creatorcontrib>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</creatorcontrib><description>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562422060217</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Advanced Studies in Artificial Intelligence and Machine Learning ; Algorithms ; Artificial intelligence ; Brain ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Principles</subject><ispartof>Doklady. Mathematics, 2022-12, Vol.106 (Suppl 1), p.S101-S112</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 106, Suppl. 1, pp. S101–S112. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 508, pp. 111–127.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</cites><orcidid>0000-0002-5651-6781 ; 0000-0003-0197-8871 ; 0000-0003-4180-2870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Kolonin, A.</creatorcontrib><creatorcontrib>Kurpatov, A.</creatorcontrib><creatorcontrib>Molchanov, A.</creatorcontrib><title>Brain Principles Programming</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</description><subject>Advanced Studies in Artificial Intelligence and Machine Learning</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLBDEQhIMouK7-AMGD4Hm0u_OYyVEXX7CgoJ5DkskMs-w8THYP_nuzrOBBPHVBfVUNxdg5wjUiFzdvCEpIRYIIFBCWB2yGkmNRcUWHWWe72PnH7CSlFYCQBDBjF3fRdsPla-wG303rkLIc22j7vhvaU3bU2HUKZz93zj4e7t8XT8Xy5fF5cbssPEfcFFIrr53nobbQYB2c82AF-saDK3nwZWV1KEn7oJCcd1pb0rVraqEbVFzwObva905x_NyGtDGrcRuH_NJQWWlSJJXMFO4pH8eUYmjMFLvexi-DYHYjmD8j5AztMymzQxvib_P_oW9NaF0A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vityaev, E.</creator><creator>Kolonin, A.</creator><creator>Kurpatov, A.</creator><creator>Molchanov, A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5651-6781</orcidid><orcidid>https://orcid.org/0000-0003-0197-8871</orcidid><orcidid>https://orcid.org/0000-0003-4180-2870</orcidid></search><sort><creationdate>20221201</creationdate><title>Brain Principles Programming</title><author>Vityaev, E. ; Kolonin, A. ; Kurpatov, A. ; Molchanov, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced Studies in Artificial Intelligence and Machine Learning</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Kolonin, A.</creatorcontrib><creatorcontrib>Kurpatov, A.</creatorcontrib><creatorcontrib>Molchanov, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vityaev, E.</au><au>Kolonin, A.</au><au>Kurpatov, A.</au><au>Molchanov, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Principles Programming</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>106</volume><issue>Suppl 1</issue><spage>S101</spage><epage>S112</epage><pages>S101-S112</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>The monograph “Strong Artificial Intelligence. On the Approaches to Superintelligence,” referenced by this paper, provides a cross-disciplinary review of Artificial General Intelligence (AGI). As an anthropomorphic direction of research, it considers Brain Principles Programming (BPP)—the formalization of universal mechanisms (principles) of the brain’s work with information, which are implemented at all levels of the organization of nervous tissue. This monograph provides a formalization of these principles in terms of the category theory. However, this formalization is not enough to develop algorithms for working with information. In this paper, for the description and modeling of BPP, it is proposed to apply mathematical models and algorithms developed by us earlier that modeling cognitive functions, which are based on well-known physiological, psychological and other natural science theories. The paper uses mathematical models and algorithms of the following theories: P.K. Anokhin’s Theory of Functional Brain Systems, Eleonor Rosch’s prototypical categorization theory, Bob Rehder’s theory of causal models and “natural” classification. As a result, the formalization of the BPP is obtained and computer examples are given that demonstrate the algorithms operation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562422060217</doi><orcidid>https://orcid.org/0000-0002-5651-6781</orcidid><orcidid>https://orcid.org/0000-0003-0197-8871</orcidid><orcidid>https://orcid.org/0000-0003-4180-2870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2022-12, Vol.106 (Suppl 1), p.S101-S112 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2789262565 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Advanced Studies in Artificial Intelligence and Machine Learning Algorithms Artificial intelligence Brain Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Principles |
title | Brain Principles Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Principles%20Programming&rft.jtitle=Doklady.%20Mathematics&rft.au=Vityaev,%20E.&rft.date=2022-12-01&rft.volume=106&rft.issue=Suppl%201&rft.spage=S101&rft.epage=S112&rft.pages=S101-S112&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562422060217&rft_dat=%3Cproquest_cross%3E2789262565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-596c9bc3eda0f1debbc0a41cfc0b73ec78a9e729ce612bcb99a29dbfd49f16343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789262565&rft_id=info:pmid/&rfr_iscdi=true |