Loading…

An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process?

The abrasive and rock properties have a significant impact on the performance and profitability of abrasive water jet (AWJ) cutting. In the relevant literature, there is no comprehensive study that investigates the effects of abrasive type on the AWJ cutting of rocks. As a result, in the current stu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2023-04, Vol.125 (9-10), p.4811-4823
Main Authors: Kaya, Serkan, Aydin, Gokhan, Karakurt, Izzet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The abrasive and rock properties have a significant impact on the performance and profitability of abrasive water jet (AWJ) cutting. In the relevant literature, there is no comprehensive study that investigates the effects of abrasive type on the AWJ cutting of rocks. As a result, in the current study, various abrasives (garnet, white fused alumina, brown fused alumina, glass beads, emery powder, olivine, steel shot, and plastic granule) were used in tests where workpieces prepared from various rock types (igneous, metamorphic, and sedimentary) were cut with AWJ. The cutting parameters were kept constant during the cutting operations. The cutting depth was taken into account when evaluating the AWJ performance. It was revealed that garnet, steel shot, and fused alumina (brown and white) have higher cutting abilities (cutting depth: 39.23–125.94 mm by the rock type). Compared to them, olivine, emery powder, and glass bead produced shallower cuts (21.11–80.00 mm by the rock type). Despite this, effective cutting did not occur with plastic granules. It was demonstrated that there are strong correlations between the cutting depth-abrasive hardness (up to r : 0.82 by rock type) and cutting depth-abrasive density (up to r : 0.87 by rock type). It was determined that the cutting depth increases as the Bohme abrasion loss, effective porosity, and water absorption capacity of the rocks increase. It was also found that the cutting depth decreases as the strength, Schmidt hardness, unit volume weight, and ultrasonic wave velocity of the rocks increase. The most essential rock properties influencing cutting depth were determined as the Bohme abrasion loss, uniaxial compressive strength, and point load strength.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-11053-5