Loading…

Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium

The authors introduce an experimental-analytical method for determining the average temperature values in the PSZ (primary shear zone) and the SSZ (secondary shear zone) during orthogonal turning of grade 2 titanium with a use of an uncoated carbide tool with a positive rake angle and a flat rake fa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2023-04, Vol.125 (9-10), p.4485-4496
Main Authors: Ślusarczyk, Łukasz, Franczyk, Emilia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3
cites cdi_FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3
container_end_page 4496
container_issue 9-10
container_start_page 4485
container_title International journal of advanced manufacturing technology
container_volume 125
creator Ślusarczyk, Łukasz
Franczyk, Emilia
description The authors introduce an experimental-analytical method for determining the average temperature values in the PSZ (primary shear zone) and the SSZ (secondary shear zone) during orthogonal turning of grade 2 titanium with a use of an uncoated carbide tool with a positive rake angle and a flat rake face. The presented method is based on an algorithm in which the values of shear stress in the PSZ and the SSZ are calculated by means of the Johnson–Cook constitutive equation and Oxley’s model of cutting mechanics. Average temperature values in the PSZ and the SSZ are determined by iteratively finding the minimum difference between the calculated stress values. As its inputs, the algorithm uses the values of the feed and the tangential cutting force components, the value of chip flow velocity on the rake face, and the constants of the Johnson–Cook constitutive equation. The model was validated with a use of empirical data collected during the experiments. The test rig consisted of a KNUTH Masterturn 400 precision lathe equipped with a dynamometer, a high-speed camera, and a thermal imaging camera.
doi_str_mv 10.1007/s00170-023-10877-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789558089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789558089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRv8GScjqsqHVIkFJgbLcc9tqjYOtjPw73EbJDamO52e9-7eF6FbRu8ZpfohUco0JZQLwmitNVFnaMakEERQps7RjPKqJkJX9SW6SmlX8IpV9Qx9LlPuDjZ3ocfB4wyHAaLNYwTc9ThvAbsx567fYBvB4vUYj32IeRs2obd7XND-NPJ4E-0aMMe5y7bvxsM1uvB2n-Dmt87Rx9PyffFCVm_Pr4vHFXGiEpnYllLVyIY6K9pWeS-8l0I7D1w43lRSauAOZKvYGlSrlRagwHFfKVlMezFHd9PeIYavEVI2u1C-KicN13WjVE3rplB8olwMKUXwZojFefw2jJpjiGYK0ZQQzSlEo4pITKI0HI1D_Fv9j-oHehJ1kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789558089</pqid></control><display><type>article</type><title>Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ślusarczyk, Łukasz ; Franczyk, Emilia</creator><creatorcontrib>Ślusarczyk, Łukasz ; Franczyk, Emilia</creatorcontrib><description>The authors introduce an experimental-analytical method for determining the average temperature values in the PSZ (primary shear zone) and the SSZ (secondary shear zone) during orthogonal turning of grade 2 titanium with a use of an uncoated carbide tool with a positive rake angle and a flat rake face. The presented method is based on an algorithm in which the values of shear stress in the PSZ and the SSZ are calculated by means of the Johnson–Cook constitutive equation and Oxley’s model of cutting mechanics. Average temperature values in the PSZ and the SSZ are determined by iteratively finding the minimum difference between the calculated stress values. As its inputs, the algorithm uses the values of the feed and the tangential cutting force components, the value of chip flow velocity on the rake face, and the constants of the Johnson–Cook constitutive equation. The model was validated with a use of empirical data collected during the experiments. The test rig consisted of a KNUTH Masterturn 400 precision lathe equipped with a dynamometer, a high-speed camera, and a thermal imaging camera.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-10877-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Carbide tools ; Computer-Aided Engineering (CAD ; Constitutive equations ; Constitutive relationships ; Cutting force ; Cutting parameters ; Empirical equations ; Engineering ; Flow velocity ; High speed cameras ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Partially stabilized zirconia ; Rake angle ; Rake faces ; Shear stress ; Shear zone ; Thermal imaging ; Titanium ; Turning (machining) ; Zirconium dioxide</subject><ispartof>International journal of advanced manufacturing technology, 2023-04, Vol.125 (9-10), p.4485-4496</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3</citedby><cites>FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3</cites><orcidid>0000-0002-3565-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ślusarczyk, Łukasz</creatorcontrib><creatorcontrib>Franczyk, Emilia</creatorcontrib><title>Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The authors introduce an experimental-analytical method for determining the average temperature values in the PSZ (primary shear zone) and the SSZ (secondary shear zone) during orthogonal turning of grade 2 titanium with a use of an uncoated carbide tool with a positive rake angle and a flat rake face. The presented method is based on an algorithm in which the values of shear stress in the PSZ and the SSZ are calculated by means of the Johnson–Cook constitutive equation and Oxley’s model of cutting mechanics. Average temperature values in the PSZ and the SSZ are determined by iteratively finding the minimum difference between the calculated stress values. As its inputs, the algorithm uses the values of the feed and the tangential cutting force components, the value of chip flow velocity on the rake face, and the constants of the Johnson–Cook constitutive equation. The model was validated with a use of empirical data collected during the experiments. The test rig consisted of a KNUTH Masterturn 400 precision lathe equipped with a dynamometer, a high-speed camera, and a thermal imaging camera.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Carbide tools</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Empirical equations</subject><subject>Engineering</subject><subject>Flow velocity</subject><subject>High speed cameras</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Partially stabilized zirconia</subject><subject>Rake angle</subject><subject>Rake faces</subject><subject>Shear stress</subject><subject>Shear zone</subject><subject>Thermal imaging</subject><subject>Titanium</subject><subject>Turning (machining)</subject><subject>Zirconium dioxide</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRv8GScjqsqHVIkFJgbLcc9tqjYOtjPw73EbJDamO52e9-7eF6FbRu8ZpfohUco0JZQLwmitNVFnaMakEERQps7RjPKqJkJX9SW6SmlX8IpV9Qx9LlPuDjZ3ocfB4wyHAaLNYwTc9ThvAbsx567fYBvB4vUYj32IeRs2obd7XND-NPJ4E-0aMMe5y7bvxsM1uvB2n-Dmt87Rx9PyffFCVm_Pr4vHFXGiEpnYllLVyIY6K9pWeS-8l0I7D1w43lRSauAOZKvYGlSrlRagwHFfKVlMezFHd9PeIYavEVI2u1C-KicN13WjVE3rplB8olwMKUXwZojFefw2jJpjiGYK0ZQQzSlEo4pITKI0HI1D_Fv9j-oHehJ1kQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ślusarczyk, Łukasz</creator><creator>Franczyk, Emilia</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3565-7868</orcidid></search><sort><creationdate>20230401</creationdate><title>Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium</title><author>Ślusarczyk, Łukasz ; Franczyk, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Carbide tools</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Empirical equations</topic><topic>Engineering</topic><topic>Flow velocity</topic><topic>High speed cameras</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Partially stabilized zirconia</topic><topic>Rake angle</topic><topic>Rake faces</topic><topic>Shear stress</topic><topic>Shear zone</topic><topic>Thermal imaging</topic><topic>Titanium</topic><topic>Turning (machining)</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ślusarczyk, Łukasz</creatorcontrib><creatorcontrib>Franczyk, Emilia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ślusarczyk, Łukasz</au><au>Franczyk, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>125</volume><issue>9-10</issue><spage>4485</spage><epage>4496</epage><pages>4485-4496</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The authors introduce an experimental-analytical method for determining the average temperature values in the PSZ (primary shear zone) and the SSZ (secondary shear zone) during orthogonal turning of grade 2 titanium with a use of an uncoated carbide tool with a positive rake angle and a flat rake face. The presented method is based on an algorithm in which the values of shear stress in the PSZ and the SSZ are calculated by means of the Johnson–Cook constitutive equation and Oxley’s model of cutting mechanics. Average temperature values in the PSZ and the SSZ are determined by iteratively finding the minimum difference between the calculated stress values. As its inputs, the algorithm uses the values of the feed and the tangential cutting force components, the value of chip flow velocity on the rake face, and the constants of the Johnson–Cook constitutive equation. The model was validated with a use of empirical data collected during the experiments. The test rig consisted of a KNUTH Masterturn 400 precision lathe equipped with a dynamometer, a high-speed camera, and a thermal imaging camera.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-10877-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3565-7868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-04, Vol.125 (9-10), p.4485-4496
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2789558089
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
CAE) and Design
Carbide tools
Computer-Aided Engineering (CAD
Constitutive equations
Constitutive relationships
Cutting force
Cutting parameters
Empirical equations
Engineering
Flow velocity
High speed cameras
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Partially stabilized zirconia
Rake angle
Rake faces
Shear stress
Shear zone
Thermal imaging
Titanium
Turning (machining)
Zirconium dioxide
title Estimation of temperature in the cutting area during orthogonal turning of grade 2 titanium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20temperature%20in%20the%20cutting%20area%20during%20orthogonal%20turning%20of%20grade%202%20titanium&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=%C5%9Alusarczyk,%20%C5%81ukasz&rft.date=2023-04-01&rft.volume=125&rft.issue=9-10&rft.spage=4485&rft.epage=4496&rft.pages=4485-4496&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-10877-5&rft_dat=%3Cproquest_cross%3E2789558089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-ab0059490ca3bb5ff3ff437cfe23c296447e2ce4b51de5b7573e5ec2f654170f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789558089&rft_id=info:pmid/&rfr_iscdi=true