Loading…

Relative pluripotential theory on compact Kähler manifolds

Given a compact K\"ahler manifold, we survey the study of complex Monge-Ampère type equations with prescribed singularity type, developed by the authors in a series of papers. In addition, we give a general answer to a question of Guedj--Zeriahi about the finite energy range of the complex Mong...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Darvas, Tamás, Eleonora Di Nezza, Lu, Chinh H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Darvas, Tamás
Eleonora Di Nezza
Lu, Chinh H
description Given a compact K\"ahler manifold, we survey the study of complex Monge-Ampère type equations with prescribed singularity type, developed by the authors in a series of papers. In addition, we give a general answer to a question of Guedj--Zeriahi about the finite energy range of the complex Monge-Ampère operator.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2789558807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789558807</sourcerecordid><originalsourceid>FETCH-proquest_journals_27895588073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDkrNSSzJLEtVKMgpLcosyC9JzSvJTMxRKMlIzS-qVMjPU0jOzy1ITC5R8D68JCMntUghNzEvMy0_J6WYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijcwtLE1NLSwMzI2JUwUAoP04pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789558807</pqid></control><display><type>article</type><title>Relative pluripotential theory on compact Kähler manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>Darvas, Tamás ; Eleonora Di Nezza ; Lu, Chinh H</creator><creatorcontrib>Darvas, Tamás ; Eleonora Di Nezza ; Lu, Chinh H</creatorcontrib><description>Given a compact K\"ahler manifold, we survey the study of complex Monge-Ampère type equations with prescribed singularity type, developed by the authors in a series of papers. In addition, we give a general answer to a question of Guedj--Zeriahi about the finite energy range of the complex Monge-Ampère operator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2789558807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Darvas, Tamás</creatorcontrib><creatorcontrib>Eleonora Di Nezza</creatorcontrib><creatorcontrib>Lu, Chinh H</creatorcontrib><title>Relative pluripotential theory on compact Kähler manifolds</title><title>arXiv.org</title><description>Given a compact K\"ahler manifold, we survey the study of complex Monge-Ampère type equations with prescribed singularity type, developed by the authors in a series of papers. In addition, we give a general answer to a question of Guedj--Zeriahi about the finite energy range of the complex Monge-Ampère operator.</description><subject>Manifolds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDkrNSSzJLEtVKMgpLcosyC9JzSvJTMxRKMlIzS-qVMjPU0jOzy1ITC5R8D68JCMntUghNzEvMy0_J6WYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijcwtLE1NLSwMzI2JUwUAoP04pw</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Darvas, Tamás</creator><creator>Eleonora Di Nezza</creator><creator>Lu, Chinh H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231003</creationdate><title>Relative pluripotential theory on compact Kähler manifolds</title><author>Darvas, Tamás ; Eleonora Di Nezza ; Lu, Chinh H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27895588073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Manifolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Darvas, Tamás</creatorcontrib><creatorcontrib>Eleonora Di Nezza</creatorcontrib><creatorcontrib>Lu, Chinh H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darvas, Tamás</au><au>Eleonora Di Nezza</au><au>Lu, Chinh H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Relative pluripotential theory on compact Kähler manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-10-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Given a compact K\"ahler manifold, we survey the study of complex Monge-Ampère type equations with prescribed singularity type, developed by the authors in a series of papers. In addition, we give a general answer to a question of Guedj--Zeriahi about the finite energy range of the complex Monge-Ampère operator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2789558807
source Publicly Available Content (ProQuest)
subjects Manifolds
title Relative pluripotential theory on compact Kähler manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Relative%20pluripotential%20theory%20on%20compact%20K%C3%A4hler%20manifolds&rft.jtitle=arXiv.org&rft.au=Darvas,%20Tam%C3%A1s&rft.date=2023-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2789558807%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27895588073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789558807&rft_id=info:pmid/&rfr_iscdi=true