Loading…
Rheological transient effects on steady-state contraction flows
It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even wi...
Saved in:
Published in: | Rheologica acta 2023-04, Vol.62 (4), p.171-181 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33 |
container_end_page | 181 |
container_issue | 4 |
container_start_page | 171 |
container_title | Rheologica acta |
container_volume | 62 |
creator | Pérez-Salas, Karen Y. Sánchez, Salvador Velasco-Segura, Roberto Ascanio, Gabriel Ruiz-Huerta, Leopoldo Aguayo, Juan P. |
description | It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior. |
doi_str_mv | 10.1007/s00397-023-01385-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789885593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789885593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA62i-k1mJFK1CQRBdhyST1CnjpCYp0n9v6gjuXL3FPfc-OABcYnSNEZI3GSHaSogIhQhTxSE6AjPMKIeYE3UMZjXnkHGMT8FZzhuEsBSSzMDty7uPQ1z3zgxNSWbMvR9L40PwruQmjk0u3nR7mIspvnFxrJArfQ3CEL_yOTgJZsj-4vfOwdvD_eviEa6el0-LuxV0VNACO8Q67qSylGHXWiOxUg57gZQXohNBsGCdJT4QIjgjyhPX2ZYrawnrnKN0Dq6m3W2Knzufi97EXRrrS02kapXivD1QZKJcijknH_Q29R8m7TVG-iBKT6J0FaV_RGlUS3Qq5QqPa5_-pv9pfQNY3mvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789885593</pqid></control><display><type>article</type><title>Rheological transient effects on steady-state contraction flows</title><source>Springer Nature</source><creator>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</creator><creatorcontrib>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</creatorcontrib><description>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-023-01385-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Equilibrium flow ; Evolution ; Food Science ; Kinematics ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Contribution ; Polymer Sciences ; Pressure drop ; Rheological properties ; Rheology ; Soft and Granular Matter ; Steady state</subject><ispartof>Rheologica acta, 2023-04, Vol.62 (4), p.171-181</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</citedby><cites>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez-Salas, Karen Y.</creatorcontrib><creatorcontrib>Sánchez, Salvador</creatorcontrib><creatorcontrib>Velasco-Segura, Roberto</creatorcontrib><creatorcontrib>Ascanio, Gabriel</creatorcontrib><creatorcontrib>Ruiz-Huerta, Leopoldo</creatorcontrib><creatorcontrib>Aguayo, Juan P.</creatorcontrib><title>Rheological transient effects on steady-state contraction flows</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Equilibrium flow</subject><subject>Evolution</subject><subject>Food Science</subject><subject>Kinematics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Soft and Granular Matter</subject><subject>Steady state</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA62i-k1mJFK1CQRBdhyST1CnjpCYp0n9v6gjuXL3FPfc-OABcYnSNEZI3GSHaSogIhQhTxSE6AjPMKIeYE3UMZjXnkHGMT8FZzhuEsBSSzMDty7uPQ1z3zgxNSWbMvR9L40PwruQmjk0u3nR7mIspvnFxrJArfQ3CEL_yOTgJZsj-4vfOwdvD_eviEa6el0-LuxV0VNACO8Q67qSylGHXWiOxUg57gZQXohNBsGCdJT4QIjgjyhPX2ZYrawnrnKN0Dq6m3W2Knzufi97EXRrrS02kapXivD1QZKJcijknH_Q29R8m7TVG-iBKT6J0FaV_RGlUS3Qq5QqPa5_-pv9pfQNY3mvW</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Pérez-Salas, Karen Y.</creator><creator>Sánchez, Salvador</creator><creator>Velasco-Segura, Roberto</creator><creator>Ascanio, Gabriel</creator><creator>Ruiz-Huerta, Leopoldo</creator><creator>Aguayo, Juan P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230401</creationdate><title>Rheological transient effects on steady-state contraction flows</title><author>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Equilibrium flow</topic><topic>Evolution</topic><topic>Food Science</topic><topic>Kinematics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Soft and Granular Matter</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Salas, Karen Y.</creatorcontrib><creatorcontrib>Sánchez, Salvador</creatorcontrib><creatorcontrib>Velasco-Segura, Roberto</creatorcontrib><creatorcontrib>Ascanio, Gabriel</creatorcontrib><creatorcontrib>Ruiz-Huerta, Leopoldo</creatorcontrib><creatorcontrib>Aguayo, Juan P.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Salas, Karen Y.</au><au>Sánchez, Salvador</au><au>Velasco-Segura, Roberto</au><au>Ascanio, Gabriel</au><au>Ruiz-Huerta, Leopoldo</au><au>Aguayo, Juan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological transient effects on steady-state contraction flows</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>62</volume><issue>4</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-023-01385-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2023-04, Vol.62 (4), p.171-181 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_proquest_journals_2789885593 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Complex Fluids and Microfluidics Equilibrium flow Evolution Food Science Kinematics Materials Science Mathematical models Mechanical Engineering Original Contribution Polymer Sciences Pressure drop Rheological properties Rheology Soft and Granular Matter Steady state |
title | Rheological transient effects on steady-state contraction flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20transient%20effects%20on%20steady-state%20contraction%20flows&rft.jtitle=Rheologica%20acta&rft.au=P%C3%A9rez-Salas,%20Karen%20Y.&rft.date=2023-04-01&rft.volume=62&rft.issue=4&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-023-01385-0&rft_dat=%3Cproquest_cross%3E2789885593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789885593&rft_id=info:pmid/&rfr_iscdi=true |