Loading…

Rheological transient effects on steady-state contraction flows

It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even wi...

Full description

Saved in:
Bibliographic Details
Published in:Rheologica acta 2023-04, Vol.62 (4), p.171-181
Main Authors: Pérez-Salas, Karen Y., Sánchez, Salvador, Velasco-Segura, Roberto, Ascanio, Gabriel, Ruiz-Huerta, Leopoldo, Aguayo, Juan P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33
cites cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33
container_end_page 181
container_issue 4
container_start_page 171
container_title Rheologica acta
container_volume 62
creator Pérez-Salas, Karen Y.
Sánchez, Salvador
Velasco-Segura, Roberto
Ascanio, Gabriel
Ruiz-Huerta, Leopoldo
Aguayo, Juan P.
description It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.
doi_str_mv 10.1007/s00397-023-01385-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789885593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789885593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA62i-k1mJFK1CQRBdhyST1CnjpCYp0n9v6gjuXL3FPfc-OABcYnSNEZI3GSHaSogIhQhTxSE6AjPMKIeYE3UMZjXnkHGMT8FZzhuEsBSSzMDty7uPQ1z3zgxNSWbMvR9L40PwruQmjk0u3nR7mIspvnFxrJArfQ3CEL_yOTgJZsj-4vfOwdvD_eviEa6el0-LuxV0VNACO8Q67qSylGHXWiOxUg57gZQXohNBsGCdJT4QIjgjyhPX2ZYrawnrnKN0Dq6m3W2Knzufi97EXRrrS02kapXivD1QZKJcijknH_Q29R8m7TVG-iBKT6J0FaV_RGlUS3Qq5QqPa5_-pv9pfQNY3mvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789885593</pqid></control><display><type>article</type><title>Rheological transient effects on steady-state contraction flows</title><source>Springer Nature</source><creator>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</creator><creatorcontrib>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</creatorcontrib><description>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-023-01385-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Equilibrium flow ; Evolution ; Food Science ; Kinematics ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Contribution ; Polymer Sciences ; Pressure drop ; Rheological properties ; Rheology ; Soft and Granular Matter ; Steady state</subject><ispartof>Rheologica acta, 2023-04, Vol.62 (4), p.171-181</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</citedby><cites>FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez-Salas, Karen Y.</creatorcontrib><creatorcontrib>Sánchez, Salvador</creatorcontrib><creatorcontrib>Velasco-Segura, Roberto</creatorcontrib><creatorcontrib>Ascanio, Gabriel</creatorcontrib><creatorcontrib>Ruiz-Huerta, Leopoldo</creatorcontrib><creatorcontrib>Aguayo, Juan P.</creatorcontrib><title>Rheological transient effects on steady-state contraction flows</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Equilibrium flow</subject><subject>Evolution</subject><subject>Food Science</subject><subject>Kinematics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Soft and Granular Matter</subject><subject>Steady state</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA62i-k1mJFK1CQRBdhyST1CnjpCYp0n9v6gjuXL3FPfc-OABcYnSNEZI3GSHaSogIhQhTxSE6AjPMKIeYE3UMZjXnkHGMT8FZzhuEsBSSzMDty7uPQ1z3zgxNSWbMvR9L40PwruQmjk0u3nR7mIspvnFxrJArfQ3CEL_yOTgJZsj-4vfOwdvD_eviEa6el0-LuxV0VNACO8Q67qSylGHXWiOxUg57gZQXohNBsGCdJT4QIjgjyhPX2ZYrawnrnKN0Dq6m3W2Knzufi97EXRrrS02kapXivD1QZKJcijknH_Q29R8m7TVG-iBKT6J0FaV_RGlUS3Qq5QqPa5_-pv9pfQNY3mvW</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Pérez-Salas, Karen Y.</creator><creator>Sánchez, Salvador</creator><creator>Velasco-Segura, Roberto</creator><creator>Ascanio, Gabriel</creator><creator>Ruiz-Huerta, Leopoldo</creator><creator>Aguayo, Juan P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230401</creationdate><title>Rheological transient effects on steady-state contraction flows</title><author>Pérez-Salas, Karen Y. ; Sánchez, Salvador ; Velasco-Segura, Roberto ; Ascanio, Gabriel ; Ruiz-Huerta, Leopoldo ; Aguayo, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Equilibrium flow</topic><topic>Evolution</topic><topic>Food Science</topic><topic>Kinematics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Soft and Granular Matter</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Salas, Karen Y.</creatorcontrib><creatorcontrib>Sánchez, Salvador</creatorcontrib><creatorcontrib>Velasco-Segura, Roberto</creatorcontrib><creatorcontrib>Ascanio, Gabriel</creatorcontrib><creatorcontrib>Ruiz-Huerta, Leopoldo</creatorcontrib><creatorcontrib>Aguayo, Juan P.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Salas, Karen Y.</au><au>Sánchez, Salvador</au><au>Velasco-Segura, Roberto</au><au>Ascanio, Gabriel</au><au>Ruiz-Huerta, Leopoldo</au><au>Aguayo, Juan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological transient effects on steady-state contraction flows</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>62</volume><issue>4</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent rheological properties only. This idea is supported by the large number of references explaining steady simulation results by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has great impact on steady-state flow behavior.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-023-01385-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2023-04, Vol.62 (4), p.171-181
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2789885593
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Fluids and Microfluidics
Equilibrium flow
Evolution
Food Science
Kinematics
Materials Science
Mathematical models
Mechanical Engineering
Original Contribution
Polymer Sciences
Pressure drop
Rheological properties
Rheology
Soft and Granular Matter
Steady state
title Rheological transient effects on steady-state contraction flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20transient%20effects%20on%20steady-state%20contraction%20flows&rft.jtitle=Rheologica%20acta&rft.au=P%C3%A9rez-Salas,%20Karen%20Y.&rft.date=2023-04-01&rft.volume=62&rft.issue=4&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-023-01385-0&rft_dat=%3Cproquest_cross%3E2789885593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d04d5c78b341c9ba7188c1e608e66d6f64fbcb2ef2265428e2cdb958bb24dcc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789885593&rft_id=info:pmid/&rfr_iscdi=true