Loading…
Detailed Modeling of Heterogeneous and Contention-Constrained Point-to-Point MPI Communication
The network topology of modern parallel computing systems is inherently heterogeneous, with a variety of latency and bandwidth values. Moreover, contention for the bandwidth can exist on different levels when many processes communicate with each other. Many-pair, point-to-point MPI communication is...
Saved in:
Published in: | IEEE transactions on parallel and distributed systems 2023-05, Vol.34 (5), p.1580-1593 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The network topology of modern parallel computing systems is inherently heterogeneous, with a variety of latency and bandwidth values. Moreover, contention for the bandwidth can exist on different levels when many processes communicate with each other. Many-pair, point-to-point MPI communication is thus characterized by heterogeneity and contention, even on a cluster of homogeneous multicore CPU nodes. To get a detailed understanding of the individual communication cost per MPI process, we propose a new modeling methodology that incorporates both heterogeneity and contention. First, we improve the standard max-rate model to better quantify the actually achievable bandwidth depending on the number of MPI processes in competition. Then, we make a further extension that more detailedly models the bandwidth contention when the competing MPI processes have different numbers of neighbors, with also non-uniform message sizes. Thereafter, we include more flexibility by considering interactions between intra-socket and inter-socket messaging. Through a series of experiments done on different processor architectures, we show that the new heterogeneous and contention-constrained performance models can adequately explain the individual communication cost associated with each MPI process. The largest test of realistic point-to-point MPI communication involves 8,192 processes and in total 2,744,632 simultaneous messages over 64 dual-socket AMD Epyc Rome compute nodes connected by InfiniBand, for which the overall prediction accuracy achieved is 84%. |
---|---|
ISSN: | 1045-9219 1558-2183 |
DOI: | 10.1109/TPDS.2023.3253881 |