Loading…
Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables
The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the r...
Saved in:
Published in: | Communications in statistics. Theory and methods 2023-05, Vol.52 (10), p.3229-3240 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893 |
container_end_page | 3240 |
container_issue | 10 |
container_start_page | 3229 |
container_title | Communications in statistics. Theory and methods |
container_volume | 52 |
creator | Eralp, Anil Gokmen, Sahika Dagalp, Rukiye |
description | The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances. |
doi_str_mv | 10.1080/03610926.2022.2147795 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2791064818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791064818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38BCHg1l6TtEnTneIbrrhRcRdzm4lG06YmrY9_b8tVl65mBr5zmHMQ2qNkTokkhyQXlFRMzBlhbM5oUZYVX0MzynOWFZQ_rKPZxGQTtIm2UnohhPJS5jP0eK0_XTM02LtX8O45BIMh9a7RvQstDhanbly1x14_4SYY8Am7FvfPgLsICdoaJmq6IcYQsy6GFvC7jk4vPaQdtGG1T7D7M7fR3fnZ7clltri5uDo5XmQ1k6LPgAoQgkiWL3NTC7qUlTBQ1lVVltrWhlhjC8Ml2EpKy8DokhfcslpYLpis8m10sPJNH9ANS9XFMUP8UkE7deruj1WIT2oYFCdUCjbi-yt8fPdtGBOrlzDEdvxQsbKiRBSSypHiK6qOIaUI9s-WEjV1r367V1P36qf7UXe00rnWhtjojxC9Ub3-8iHaqNvaJZX_b_ENaMGMXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791064818</pqid></control><display><type>article</type><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><source>Taylor and Francis Science and Technology Collection</source><creator>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</creator><creatorcontrib>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</creatorcontrib><description>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</description><identifier>ISSN: 0361-0926</identifier><identifier>ISSN: 1532-415X</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2022.2147795</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Bias ; Data analysis ; Econometrics ; Error analysis ; error-prone variables ; Mathematical models ; Maximum likelihood estimation ; Parameter estimation ; simulation study ; spatial autoregressive model ; Spatial data ; Spatial econometrics models ; spatial lag model</subject><ispartof>Communications in statistics. Theory and methods, 2023-05, Vol.52 (10), p.3229-3240</ispartof><rights>2022 Taylor & Francis Group, LLC 2022</rights><rights>2022 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</cites><orcidid>0000-0002-7335-8578 ; 0000-0002-4127-7108 ; 0000-0002-4630-2114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-501862$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eralp, Anil</creatorcontrib><creatorcontrib>Gokmen, Sahika</creatorcontrib><creatorcontrib>Dagalp, Rukiye</creatorcontrib><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><title>Communications in statistics. Theory and methods</title><description>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</description><subject>Bias</subject><subject>Data analysis</subject><subject>Econometrics</subject><subject>Error analysis</subject><subject>error-prone variables</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>simulation study</subject><subject>spatial autoregressive model</subject><subject>Spatial data</subject><subject>Spatial econometrics models</subject><subject>spatial lag model</subject><issn>0361-0926</issn><issn>1532-415X</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxTAQhYMoeH38BCHg1l6TtEnTneIbrrhRcRdzm4lG06YmrY9_b8tVl65mBr5zmHMQ2qNkTokkhyQXlFRMzBlhbM5oUZYVX0MzynOWFZQ_rKPZxGQTtIm2UnohhPJS5jP0eK0_XTM02LtX8O45BIMh9a7RvQstDhanbly1x14_4SYY8Am7FvfPgLsICdoaJmq6IcYQsy6GFvC7jk4vPaQdtGG1T7D7M7fR3fnZ7clltri5uDo5XmQ1k6LPgAoQgkiWL3NTC7qUlTBQ1lVVltrWhlhjC8Ml2EpKy8DokhfcslpYLpis8m10sPJNH9ANS9XFMUP8UkE7deruj1WIT2oYFCdUCjbi-yt8fPdtGBOrlzDEdvxQsbKiRBSSypHiK6qOIaUI9s-WEjV1r367V1P36qf7UXe00rnWhtjojxC9Ub3-8iHaqNvaJZX_b_ENaMGMXw</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Eralp, Anil</creator><creator>Gokmen, Sahika</creator><creator>Dagalp, Rukiye</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7335-8578</orcidid><orcidid>https://orcid.org/0000-0002-4127-7108</orcidid><orcidid>https://orcid.org/0000-0002-4630-2114</orcidid></search><sort><creationdate>20230519</creationdate><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><author>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Data analysis</topic><topic>Econometrics</topic><topic>Error analysis</topic><topic>error-prone variables</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>simulation study</topic><topic>spatial autoregressive model</topic><topic>Spatial data</topic><topic>Spatial econometrics models</topic><topic>spatial lag model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eralp, Anil</creatorcontrib><creatorcontrib>Gokmen, Sahika</creatorcontrib><creatorcontrib>Dagalp, Rukiye</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eralp, Anil</au><au>Gokmen, Sahika</au><au>Dagalp, Rukiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>52</volume><issue>10</issue><spage>3229</spage><epage>3240</epage><pages>3229-3240</pages><issn>0361-0926</issn><issn>1532-415X</issn><eissn>1532-415X</eissn><abstract>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610926.2022.2147795</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7335-8578</orcidid><orcidid>https://orcid.org/0000-0002-4127-7108</orcidid><orcidid>https://orcid.org/0000-0002-4630-2114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2023-05, Vol.52 (10), p.3229-3240 |
issn | 0361-0926 1532-415X 1532-415X |
language | eng |
recordid | cdi_proquest_journals_2791064818 |
source | Taylor and Francis Science and Technology Collection |
subjects | Bias Data analysis Econometrics Error analysis error-prone variables Mathematical models Maximum likelihood estimation Parameter estimation simulation study spatial autoregressive model Spatial data Spatial econometrics models spatial lag model |
title | Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimation%20of%20spatial%20lag%20models%20in%20the%20presence%20of%20the%20error-prone%20variables&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Eralp,%20Anil&rft.date=2023-05-19&rft.volume=52&rft.issue=10&rft.spage=3229&rft.epage=3240&rft.pages=3229-3240&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2022.2147795&rft_dat=%3Cproquest_swepu%3E2791064818%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791064818&rft_id=info:pmid/&rfr_iscdi=true |