Loading…

Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables

The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the r...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2023-05, Vol.52 (10), p.3229-3240
Main Authors: Eralp, Anil, Gokmen, Sahika, Dagalp, Rukiye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893
container_end_page 3240
container_issue 10
container_start_page 3229
container_title Communications in statistics. Theory and methods
container_volume 52
creator Eralp, Anil
Gokmen, Sahika
Dagalp, Rukiye
description The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.
doi_str_mv 10.1080/03610926.2022.2147795
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2791064818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791064818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38BCHg1l6TtEnTneIbrrhRcRdzm4lG06YmrY9_b8tVl65mBr5zmHMQ2qNkTokkhyQXlFRMzBlhbM5oUZYVX0MzynOWFZQ_rKPZxGQTtIm2UnohhPJS5jP0eK0_XTM02LtX8O45BIMh9a7RvQstDhanbly1x14_4SYY8Am7FvfPgLsICdoaJmq6IcYQsy6GFvC7jk4vPaQdtGG1T7D7M7fR3fnZ7clltri5uDo5XmQ1k6LPgAoQgkiWL3NTC7qUlTBQ1lVVltrWhlhjC8Ml2EpKy8DokhfcslpYLpis8m10sPJNH9ANS9XFMUP8UkE7deruj1WIT2oYFCdUCjbi-yt8fPdtGBOrlzDEdvxQsbKiRBSSypHiK6qOIaUI9s-WEjV1r367V1P36qf7UXe00rnWhtjojxC9Ub3-8iHaqNvaJZX_b_ENaMGMXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791064818</pqid></control><display><type>article</type><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><source>Taylor and Francis Science and Technology Collection</source><creator>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</creator><creatorcontrib>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</creatorcontrib><description>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</description><identifier>ISSN: 0361-0926</identifier><identifier>ISSN: 1532-415X</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2022.2147795</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Bias ; Data analysis ; Econometrics ; Error analysis ; error-prone variables ; Mathematical models ; Maximum likelihood estimation ; Parameter estimation ; simulation study ; spatial autoregressive model ; Spatial data ; Spatial econometrics models ; spatial lag model</subject><ispartof>Communications in statistics. Theory and methods, 2023-05, Vol.52 (10), p.3229-3240</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</cites><orcidid>0000-0002-7335-8578 ; 0000-0002-4127-7108 ; 0000-0002-4630-2114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-501862$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eralp, Anil</creatorcontrib><creatorcontrib>Gokmen, Sahika</creatorcontrib><creatorcontrib>Dagalp, Rukiye</creatorcontrib><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><title>Communications in statistics. Theory and methods</title><description>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</description><subject>Bias</subject><subject>Data analysis</subject><subject>Econometrics</subject><subject>Error analysis</subject><subject>error-prone variables</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>simulation study</subject><subject>spatial autoregressive model</subject><subject>Spatial data</subject><subject>Spatial econometrics models</subject><subject>spatial lag model</subject><issn>0361-0926</issn><issn>1532-415X</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxTAQhYMoeH38BCHg1l6TtEnTneIbrrhRcRdzm4lG06YmrY9_b8tVl65mBr5zmHMQ2qNkTokkhyQXlFRMzBlhbM5oUZYVX0MzynOWFZQ_rKPZxGQTtIm2UnohhPJS5jP0eK0_XTM02LtX8O45BIMh9a7RvQstDhanbly1x14_4SYY8Am7FvfPgLsICdoaJmq6IcYQsy6GFvC7jk4vPaQdtGG1T7D7M7fR3fnZ7clltri5uDo5XmQ1k6LPgAoQgkiWL3NTC7qUlTBQ1lVVltrWhlhjC8Ml2EpKy8DokhfcslpYLpis8m10sPJNH9ANS9XFMUP8UkE7deruj1WIT2oYFCdUCjbi-yt8fPdtGBOrlzDEdvxQsbKiRBSSypHiK6qOIaUI9s-WEjV1r367V1P36qf7UXe00rnWhtjojxC9Ub3-8iHaqNvaJZX_b_ENaMGMXw</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Eralp, Anil</creator><creator>Gokmen, Sahika</creator><creator>Dagalp, Rukiye</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7335-8578</orcidid><orcidid>https://orcid.org/0000-0002-4127-7108</orcidid><orcidid>https://orcid.org/0000-0002-4630-2114</orcidid></search><sort><creationdate>20230519</creationdate><title>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</title><author>Eralp, Anil ; Gokmen, Sahika ; Dagalp, Rukiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Data analysis</topic><topic>Econometrics</topic><topic>Error analysis</topic><topic>error-prone variables</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>simulation study</topic><topic>spatial autoregressive model</topic><topic>Spatial data</topic><topic>Spatial econometrics models</topic><topic>spatial lag model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eralp, Anil</creatorcontrib><creatorcontrib>Gokmen, Sahika</creatorcontrib><creatorcontrib>Dagalp, Rukiye</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eralp, Anil</au><au>Gokmen, Sahika</au><au>Dagalp, Rukiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>52</volume><issue>10</issue><spage>3229</spage><epage>3240</epage><pages>3229-3240</pages><issn>0361-0926</issn><issn>1532-415X</issn><eissn>1532-415X</eissn><abstract>The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2022.2147795</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7335-8578</orcidid><orcidid>https://orcid.org/0000-0002-4127-7108</orcidid><orcidid>https://orcid.org/0000-0002-4630-2114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2023-05, Vol.52 (10), p.3229-3240
issn 0361-0926
1532-415X
1532-415X
language eng
recordid cdi_proquest_journals_2791064818
source Taylor and Francis Science and Technology Collection
subjects Bias
Data analysis
Econometrics
Error analysis
error-prone variables
Mathematical models
Maximum likelihood estimation
Parameter estimation
simulation study
spatial autoregressive model
Spatial data
Spatial econometrics models
spatial lag model
title Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimation%20of%20spatial%20lag%20models%20in%20the%20presence%20of%20the%20error-prone%20variables&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Eralp,%20Anil&rft.date=2023-05-19&rft.volume=52&rft.issue=10&rft.spage=3229&rft.epage=3240&rft.pages=3229-3240&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2022.2147795&rft_dat=%3Cproquest_swepu%3E2791064818%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-e16e660823b3dc61b896de7c9977afcd0fdf4d58ef988f2eda7545f2c6f562893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791064818&rft_id=info:pmid/&rfr_iscdi=true