Loading…
On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function
In the present paper, we have derived some unified image formulas of the generalized \(q\)-Mittag-Leffler function under fractional calculus operators. We have derived the integral and derivative formulas of Saigo's for the generalized \(q\)-Mittag-Leffler function in terms of basic hypergeomet...
Saved in:
Published in: | Communications in Mathematics and Applications 2022-01, Vol.13 (3), p.835-842 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 842 |
container_issue | 3 |
container_start_page | 835 |
container_title | Communications in Mathematics and Applications |
container_volume | 13 |
creator | Bhadana, Krishna Gopal Meena, Ashok Kumar |
description | In the present paper, we have derived some unified image formulas of the generalized \(q\)-Mittag-Leffler function under fractional calculus operators. We have derived the integral and derivative formulas of Saigo's for the generalized \(q\)-Mittag-Leffler function in terms of basic hypergeometric series \(_2\Phi_1 [a,b;c \, | \, q,z]\) and with the help of main results we have obtained the known formulas of the generalized \(q\)-Mittag-Leffler function such as Riemann-Liouville fractional integral & derivatives. The Kober and Weyl integrals of the generalized \(q\)-Mittag-Leffler function are also obtained as special cases. |
doi_str_mv | 10.26713/cma.v13i3.1854 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791340709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791340709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-2522306164373a21d3a5fc20971b750fddbcc5e3d9d26112a09245073153489b3</originalsourceid><addsrcrecordid>eNotkEtPAjEUhRujiQRZu23ieqCPaUuXSARMMGx0a1P6wCHDFNuOif566-Dq3sV3Tk4-AO4xmhIuMJ2Zk55-YdrQKZ6z-gqMkBSsmnMkroefV0widgsmKR0RQkTyWlA5Au-7Dq6iNrkJnW7hUremb_sEd2cXdQ4xQd1ZmD8cfNSpMXBRqHDoHQwerl1XoLb5cRa-NDnrQ7V13rcuwlXfDZV34MbrNrnJ_x2Dt9XT63JTbXfr5-ViWxnMaK4II4QijnlNBdUEW6qZN6TsxnvBkLd2bwxz1EpLOMZEI0lqhgQt6Xou93QMHi695xg-e5eyOoY-lq1JESExrZFAslCzC2ViSCk6r86xOen4rTBSg0dVPKrBo_rzSH8B_NBlMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791340709</pqid></control><display><type>article</type><title>On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function</title><source>ProQuest - Publicly Available Content Database</source><creator>Bhadana, Krishna Gopal ; Meena, Ashok Kumar</creator><creatorcontrib>Bhadana, Krishna Gopal ; Meena, Ashok Kumar</creatorcontrib><description>In the present paper, we have derived some unified image formulas of the generalized \(q\)-Mittag-Leffler function under fractional calculus operators. We have derived the integral and derivative formulas of Saigo's for the generalized \(q\)-Mittag-Leffler function in terms of basic hypergeometric series \(_2\Phi_1 [a,b;c \, | \, q,z]\) and with the help of main results we have obtained the known formulas of the generalized \(q\)-Mittag-Leffler function such as Riemann-Liouville fractional integral & derivatives. The Kober and Weyl integrals of the generalized \(q\)-Mittag-Leffler function are also obtained as special cases.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v13i3.1854</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Calculus ; Derivatives ; Fractional calculus ; Integrals ; Mathematics ; Operators (mathematics)</subject><ispartof>Communications in Mathematics and Applications, 2022-01, Vol.13 (3), p.835-842</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1768-7542 ; 0000-0002-1452-9058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2791340709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bhadana, Krishna Gopal</creatorcontrib><creatorcontrib>Meena, Ashok Kumar</creatorcontrib><title>On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function</title><title>Communications in Mathematics and Applications</title><description>In the present paper, we have derived some unified image formulas of the generalized \(q\)-Mittag-Leffler function under fractional calculus operators. We have derived the integral and derivative formulas of Saigo's for the generalized \(q\)-Mittag-Leffler function in terms of basic hypergeometric series \(_2\Phi_1 [a,b;c \, | \, q,z]\) and with the help of main results we have obtained the known formulas of the generalized \(q\)-Mittag-Leffler function such as Riemann-Liouville fractional integral & derivatives. The Kober and Weyl integrals of the generalized \(q\)-Mittag-Leffler function are also obtained as special cases.</description><subject>Calculus</subject><subject>Derivatives</subject><subject>Fractional calculus</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Operators (mathematics)</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkEtPAjEUhRujiQRZu23ieqCPaUuXSARMMGx0a1P6wCHDFNuOif566-Dq3sV3Tk4-AO4xmhIuMJ2Zk55-YdrQKZ6z-gqMkBSsmnMkroefV0widgsmKR0RQkTyWlA5Au-7Dq6iNrkJnW7hUremb_sEd2cXdQ4xQd1ZmD8cfNSpMXBRqHDoHQwerl1XoLb5cRa-NDnrQ7V13rcuwlXfDZV34MbrNrnJ_x2Dt9XT63JTbXfr5-ViWxnMaK4II4QijnlNBdUEW6qZN6TsxnvBkLd2bwxz1EpLOMZEI0lqhgQt6Xou93QMHi695xg-e5eyOoY-lq1JESExrZFAslCzC2ViSCk6r86xOen4rTBSg0dVPKrBo_rzSH8B_NBlMQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bhadana, Krishna Gopal</creator><creator>Meena, Ashok Kumar</creator><general>RGN Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1768-7542</orcidid><orcidid>https://orcid.org/0000-0002-1452-9058</orcidid></search><sort><creationdate>20220101</creationdate><title>On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function</title><author>Bhadana, Krishna Gopal ; Meena, Ashok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-2522306164373a21d3a5fc20971b750fddbcc5e3d9d26112a09245073153489b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus</topic><topic>Derivatives</topic><topic>Fractional calculus</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhadana, Krishna Gopal</creatorcontrib><creatorcontrib>Meena, Ashok Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhadana, Krishna Gopal</au><au>Meena, Ashok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>835</spage><epage>842</epage><pages>835-842</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>In the present paper, we have derived some unified image formulas of the generalized \(q\)-Mittag-Leffler function under fractional calculus operators. We have derived the integral and derivative formulas of Saigo's for the generalized \(q\)-Mittag-Leffler function in terms of basic hypergeometric series \(_2\Phi_1 [a,b;c \, | \, q,z]\) and with the help of main results we have obtained the known formulas of the generalized \(q\)-Mittag-Leffler function such as Riemann-Liouville fractional integral & derivatives. The Kober and Weyl integrals of the generalized \(q\)-Mittag-Leffler function are also obtained as special cases.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v13i3.1854</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1768-7542</orcidid><orcidid>https://orcid.org/0000-0002-1452-9058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-5905 |
ispartof | Communications in Mathematics and Applications, 2022-01, Vol.13 (3), p.835-842 |
issn | 0976-5905 0975-8607 |
language | eng |
recordid | cdi_proquest_journals_2791340709 |
source | ProQuest - Publicly Available Content Database |
subjects | Calculus Derivatives Fractional calculus Integrals Mathematics Operators (mathematics) |
title | On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Fractional%20Calculus%20Operators%20and%20the%20Basic%20Analogue%20of%20Generalized%20Mittag-Leffler%20Function&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Bhadana,%20Krishna%20Gopal&rft.date=2022-01-01&rft.volume=13&rft.issue=3&rft.spage=835&rft.epage=842&rft.pages=835-842&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v13i3.1854&rft_dat=%3Cproquest_cross%3E2791340709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c153t-2522306164373a21d3a5fc20971b750fddbcc5e3d9d26112a09245073153489b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791340709&rft_id=info:pmid/&rfr_iscdi=true |