Loading…

Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis

Being able to provide counterfactual interventions—sequences of actions we would have had to take for a desirable outcome to happen—is essential to explain how to change an unfavourable decision by a black-box machine learning model (e.g., being denied a loan request). Existing solutions have mainly...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2023-04, Vol.112 (4), p.1389-1409
Main Authors: De Toni, Giovanni, Lepri, Bruno, Passerini, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Being able to provide counterfactual interventions—sequences of actions we would have had to take for a desirable outcome to happen—is essential to explain how to change an unfavourable decision by a black-box machine learning model (e.g., being denied a loan request). Existing solutions have mainly focused on generating feasible interventions without providing explanations of their rationale. Moreover, they need to solve a separate optimization problem for each user. In this paper, we take a different approach and learn a program that outputs a sequence of explainable counterfactual actions given a user description and a causal graph. We leverage program synthesis techniques, reinforcement learning coupled with Monte Carlo Tree Search for efficient exploration, and rule learning to extract explanations for each recommended action. An experimental evaluation on synthetic and real-world datasets shows how our approach, FARE (eFficient counterfActual REcourse), generates effective interventions by making orders of magnitude fewer queries to the black-box classifier with respect to existing solutions, with the additional benefit of complementing them with interpretable explanations.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-022-06293-7