Loading…
Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties
The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232...
Saved in:
Published in: | Catalysts 2023-03, Vol.13 (3), p.462 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063 |
container_end_page | |
container_issue | 3 |
container_start_page | 462 |
container_title | Catalysts |
container_volume | 13 |
creator | Sayed, Mohamed Adel Ajarem, Jamaan S. Allam, Ahmed A. Abukhadra, Mostafa R. Luo, Jianmin Wang, Chuanyi Bellucci, Stefano |
description | The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems. |
doi_str_mv | 10.3390/catal13030462 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791598456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743761511</galeid><sourcerecordid>A743761511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</originalsourceid><addsrcrecordid>eNpVUUtr3DAQNqWFhDTH3AU9BqeSRvKjt8U0bdilCWR7NmNZzirxSltJprg_sb8qcjfQRDpIzHwvZrLsgtErgJp-VhhxZECBioK_y045LSEXIMT7V_-T7DyER5pOzaBi8jT72yy8ORpFmh16VFF78wejcZa4gdzPNu700l1fErQ9-YGX5N71OJqoyd0Ogw6km8nG_SZbvT9oj3HymqzGpwQh11N4EVqjG41dSP3kjX0gSZZsPdoksFgORv03PWgbSePc0wK8NeMXsjb2X4olwnan_d71s8V9qtx5l1yj0eFj9mHAMejzl_cs-3n9ddt8zze3326a1SZXICDm2PVQ6bpiHWX1wCgDDl1XKJAV0KLknHWqq4QaSqnLQgKXjKOUlSi5koIWcJZ9OuoevPs1pfjto5u8TZYtL2sm60rIBXV1RD3gqFtjBxfTdNPtdYrtrB5Mqq9KAWXBJGOJkB8JyrsQvB7agzd79HPLaLusuH2zYngGMyKbtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791598456</pqid></control><display><type>article</type><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><source>Publicly Available Content (ProQuest)</source><creator>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</creator><creatorcontrib>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</creatorcontrib><description>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13030462</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Alternative energy ; Basicity ; Biodiesel fuels ; Biomass energy ; Catalysts ; Chemical reactions ; Cooking ; Energy consumption ; Energy minerals ; Enthalpy ; Fatty acids ; Fossil fuels ; Free energy ; Green technology ; Ion exchange ; Kaolinite ; Low temperature ; Lubricants & lubrication ; Morphology ; Phases ; Potassium ; Sodalite ; Sodium ; Surface area ; Thermodynamic properties ; Thermodynamics ; Transesterification ; Vegetable oils ; Williams, C ; Zeolites</subject><ispartof>Catalysts, 2023-03, Vol.13 (3), p.462</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</citedby><cites>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</cites><orcidid>0000-0001-5404-7996 ; 0000-0003-0326-6368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791598456/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791598456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Sayed, Mohamed Adel</creatorcontrib><creatorcontrib>Ajarem, Jamaan S.</creatorcontrib><creatorcontrib>Allam, Ahmed A.</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Wang, Chuanyi</creatorcontrib><creatorcontrib>Bellucci, Stefano</creatorcontrib><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><title>Catalysts</title><description>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</description><subject>Alcohol</subject><subject>Alternative energy</subject><subject>Basicity</subject><subject>Biodiesel fuels</subject><subject>Biomass energy</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Cooking</subject><subject>Energy consumption</subject><subject>Energy minerals</subject><subject>Enthalpy</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>Free energy</subject><subject>Green technology</subject><subject>Ion exchange</subject><subject>Kaolinite</subject><subject>Low temperature</subject><subject>Lubricants & lubrication</subject><subject>Morphology</subject><subject>Phases</subject><subject>Potassium</subject><subject>Sodalite</subject><subject>Sodium</subject><subject>Surface area</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transesterification</subject><subject>Vegetable oils</subject><subject>Williams, C</subject><subject>Zeolites</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUUtr3DAQNqWFhDTH3AU9BqeSRvKjt8U0bdilCWR7NmNZzirxSltJprg_sb8qcjfQRDpIzHwvZrLsgtErgJp-VhhxZECBioK_y045LSEXIMT7V_-T7DyER5pOzaBi8jT72yy8ORpFmh16VFF78wejcZa4gdzPNu700l1fErQ9-YGX5N71OJqoyd0Ogw6km8nG_SZbvT9oj3HymqzGpwQh11N4EVqjG41dSP3kjX0gSZZsPdoksFgORv03PWgbSePc0wK8NeMXsjb2X4olwnan_d71s8V9qtx5l1yj0eFj9mHAMejzl_cs-3n9ddt8zze3326a1SZXICDm2PVQ6bpiHWX1wCgDDl1XKJAV0KLknHWqq4QaSqnLQgKXjKOUlSi5koIWcJZ9OuoevPs1pfjto5u8TZYtL2sm60rIBXV1RD3gqFtjBxfTdNPtdYrtrB5Mqq9KAWXBJGOJkB8JyrsQvB7agzd79HPLaLusuH2zYngGMyKbtQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Sayed, Mohamed Adel</creator><creator>Ajarem, Jamaan S.</creator><creator>Allam, Ahmed A.</creator><creator>Abukhadra, Mostafa R.</creator><creator>Luo, Jianmin</creator><creator>Wang, Chuanyi</creator><creator>Bellucci, Stefano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><orcidid>https://orcid.org/0000-0003-0326-6368</orcidid></search><sort><creationdate>20230301</creationdate><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><author>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alcohol</topic><topic>Alternative energy</topic><topic>Basicity</topic><topic>Biodiesel fuels</topic><topic>Biomass energy</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Cooking</topic><topic>Energy consumption</topic><topic>Energy minerals</topic><topic>Enthalpy</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>Free energy</topic><topic>Green technology</topic><topic>Ion exchange</topic><topic>Kaolinite</topic><topic>Low temperature</topic><topic>Lubricants & lubrication</topic><topic>Morphology</topic><topic>Phases</topic><topic>Potassium</topic><topic>Sodalite</topic><topic>Sodium</topic><topic>Surface area</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transesterification</topic><topic>Vegetable oils</topic><topic>Williams, C</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, Mohamed Adel</creatorcontrib><creatorcontrib>Ajarem, Jamaan S.</creatorcontrib><creatorcontrib>Allam, Ahmed A.</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Wang, Chuanyi</creatorcontrib><creatorcontrib>Bellucci, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, Mohamed Adel</au><au>Ajarem, Jamaan S.</au><au>Allam, Ahmed A.</au><au>Abukhadra, Mostafa R.</au><au>Luo, Jianmin</au><au>Wang, Chuanyi</au><au>Bellucci, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</atitle><jtitle>Catalysts</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>462</spage><pages>462-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13030462</doi><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><orcidid>https://orcid.org/0000-0003-0326-6368</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2023-03, Vol.13 (3), p.462 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2791598456 |
source | Publicly Available Content (ProQuest) |
subjects | Alcohol Alternative energy Basicity Biodiesel fuels Biomass energy Catalysts Chemical reactions Cooking Energy consumption Energy minerals Enthalpy Fatty acids Fossil fuels Free energy Green technology Ion exchange Kaolinite Low temperature Lubricants & lubrication Morphology Phases Potassium Sodalite Sodium Surface area Thermodynamic properties Thermodynamics Transesterification Vegetable oils Williams, C Zeolites |
title | Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Characterization%20of%20Synthetic%20K+%20and%20Na+%20Sodalite%20Phases%20by%20Low%20Temperature%20Alkali%20Fusion%20of%20Kaolinite%20during%20the%20Transesterification%20of%20Spent%20Cooking%20Oil:%20Kinetic%20and%20Thermodynamic%20Properties&rft.jtitle=Catalysts&rft.au=Sayed,%20Mohamed%20Adel&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=462&rft.pages=462-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13030462&rft_dat=%3Cgale_proqu%3EA743761511%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791598456&rft_id=info:pmid/&rft_galeid=A743761511&rfr_iscdi=true |