Loading…

Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties

The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2023-03, Vol.13 (3), p.462
Main Authors: Sayed, Mohamed Adel, Ajarem, Jamaan S., Allam, Ahmed A., Abukhadra, Mostafa R., Luo, Jianmin, Wang, Chuanyi, Bellucci, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063
cites cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063
container_end_page
container_issue 3
container_start_page 462
container_title Catalysts
container_volume 13
creator Sayed, Mohamed Adel
Ajarem, Jamaan S.
Allam, Ahmed A.
Abukhadra, Mostafa R.
Luo, Jianmin
Wang, Chuanyi
Bellucci, Stefano
description The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.
doi_str_mv 10.3390/catal13030462
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791598456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743761511</galeid><sourcerecordid>A743761511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</originalsourceid><addsrcrecordid>eNpVUUtr3DAQNqWFhDTH3AU9BqeSRvKjt8U0bdilCWR7NmNZzirxSltJprg_sb8qcjfQRDpIzHwvZrLsgtErgJp-VhhxZECBioK_y045LSEXIMT7V_-T7DyER5pOzaBi8jT72yy8ORpFmh16VFF78wejcZa4gdzPNu700l1fErQ9-YGX5N71OJqoyd0Ogw6km8nG_SZbvT9oj3HymqzGpwQh11N4EVqjG41dSP3kjX0gSZZsPdoksFgORv03PWgbSePc0wK8NeMXsjb2X4olwnan_d71s8V9qtx5l1yj0eFj9mHAMejzl_cs-3n9ddt8zze3326a1SZXICDm2PVQ6bpiHWX1wCgDDl1XKJAV0KLknHWqq4QaSqnLQgKXjKOUlSi5koIWcJZ9OuoevPs1pfjto5u8TZYtL2sm60rIBXV1RD3gqFtjBxfTdNPtdYrtrB5Mqq9KAWXBJGOJkB8JyrsQvB7agzd79HPLaLusuH2zYngGMyKbtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791598456</pqid></control><display><type>article</type><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><source>Publicly Available Content (ProQuest)</source><creator>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</creator><creatorcontrib>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</creatorcontrib><description>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13030462</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Alternative energy ; Basicity ; Biodiesel fuels ; Biomass energy ; Catalysts ; Chemical reactions ; Cooking ; Energy consumption ; Energy minerals ; Enthalpy ; Fatty acids ; Fossil fuels ; Free energy ; Green technology ; Ion exchange ; Kaolinite ; Low temperature ; Lubricants &amp; lubrication ; Morphology ; Phases ; Potassium ; Sodalite ; Sodium ; Surface area ; Thermodynamic properties ; Thermodynamics ; Transesterification ; Vegetable oils ; Williams, C ; Zeolites</subject><ispartof>Catalysts, 2023-03, Vol.13 (3), p.462</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</citedby><cites>FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</cites><orcidid>0000-0001-5404-7996 ; 0000-0003-0326-6368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791598456/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791598456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Sayed, Mohamed Adel</creatorcontrib><creatorcontrib>Ajarem, Jamaan S.</creatorcontrib><creatorcontrib>Allam, Ahmed A.</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Wang, Chuanyi</creatorcontrib><creatorcontrib>Bellucci, Stefano</creatorcontrib><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><title>Catalysts</title><description>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</description><subject>Alcohol</subject><subject>Alternative energy</subject><subject>Basicity</subject><subject>Biodiesel fuels</subject><subject>Biomass energy</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Cooking</subject><subject>Energy consumption</subject><subject>Energy minerals</subject><subject>Enthalpy</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>Free energy</subject><subject>Green technology</subject><subject>Ion exchange</subject><subject>Kaolinite</subject><subject>Low temperature</subject><subject>Lubricants &amp; lubrication</subject><subject>Morphology</subject><subject>Phases</subject><subject>Potassium</subject><subject>Sodalite</subject><subject>Sodium</subject><subject>Surface area</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transesterification</subject><subject>Vegetable oils</subject><subject>Williams, C</subject><subject>Zeolites</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUUtr3DAQNqWFhDTH3AU9BqeSRvKjt8U0bdilCWR7NmNZzirxSltJprg_sb8qcjfQRDpIzHwvZrLsgtErgJp-VhhxZECBioK_y045LSEXIMT7V_-T7DyER5pOzaBi8jT72yy8ORpFmh16VFF78wejcZa4gdzPNu700l1fErQ9-YGX5N71OJqoyd0Ogw6km8nG_SZbvT9oj3HymqzGpwQh11N4EVqjG41dSP3kjX0gSZZsPdoksFgORv03PWgbSePc0wK8NeMXsjb2X4olwnan_d71s8V9qtx5l1yj0eFj9mHAMejzl_cs-3n9ddt8zze3326a1SZXICDm2PVQ6bpiHWX1wCgDDl1XKJAV0KLknHWqq4QaSqnLQgKXjKOUlSi5koIWcJZ9OuoevPs1pfjto5u8TZYtL2sm60rIBXV1RD3gqFtjBxfTdNPtdYrtrB5Mqq9KAWXBJGOJkB8JyrsQvB7agzd79HPLaLusuH2zYngGMyKbtQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Sayed, Mohamed Adel</creator><creator>Ajarem, Jamaan S.</creator><creator>Allam, Ahmed A.</creator><creator>Abukhadra, Mostafa R.</creator><creator>Luo, Jianmin</creator><creator>Wang, Chuanyi</creator><creator>Bellucci, Stefano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><orcidid>https://orcid.org/0000-0003-0326-6368</orcidid></search><sort><creationdate>20230301</creationdate><title>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</title><author>Sayed, Mohamed Adel ; Ajarem, Jamaan S. ; Allam, Ahmed A. ; Abukhadra, Mostafa R. ; Luo, Jianmin ; Wang, Chuanyi ; Bellucci, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alcohol</topic><topic>Alternative energy</topic><topic>Basicity</topic><topic>Biodiesel fuels</topic><topic>Biomass energy</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Cooking</topic><topic>Energy consumption</topic><topic>Energy minerals</topic><topic>Enthalpy</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>Free energy</topic><topic>Green technology</topic><topic>Ion exchange</topic><topic>Kaolinite</topic><topic>Low temperature</topic><topic>Lubricants &amp; lubrication</topic><topic>Morphology</topic><topic>Phases</topic><topic>Potassium</topic><topic>Sodalite</topic><topic>Sodium</topic><topic>Surface area</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transesterification</topic><topic>Vegetable oils</topic><topic>Williams, C</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, Mohamed Adel</creatorcontrib><creatorcontrib>Ajarem, Jamaan S.</creatorcontrib><creatorcontrib>Allam, Ahmed A.</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Wang, Chuanyi</creatorcontrib><creatorcontrib>Bellucci, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, Mohamed Adel</au><au>Ajarem, Jamaan S.</au><au>Allam, Ahmed A.</au><au>Abukhadra, Mostafa R.</au><au>Luo, Jianmin</au><au>Wang, Chuanyi</au><au>Bellucci, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties</atitle><jtitle>Catalysts</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>462</spage><pages>462-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13030462</doi><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><orcidid>https://orcid.org/0000-0003-0326-6368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2023-03, Vol.13 (3), p.462
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_2791598456
source Publicly Available Content (ProQuest)
subjects Alcohol
Alternative energy
Basicity
Biodiesel fuels
Biomass energy
Catalysts
Chemical reactions
Cooking
Energy consumption
Energy minerals
Enthalpy
Fatty acids
Fossil fuels
Free energy
Green technology
Ion exchange
Kaolinite
Low temperature
Lubricants & lubrication
Morphology
Phases
Potassium
Sodalite
Sodium
Surface area
Thermodynamic properties
Thermodynamics
Transesterification
Vegetable oils
Williams, C
Zeolites
title Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Characterization%20of%20Synthetic%20K+%20and%20Na+%20Sodalite%20Phases%20by%20Low%20Temperature%20Alkali%20Fusion%20of%20Kaolinite%20during%20the%20Transesterification%20of%20Spent%20Cooking%20Oil:%20Kinetic%20and%20Thermodynamic%20Properties&rft.jtitle=Catalysts&rft.au=Sayed,%20Mohamed%20Adel&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=462&rft.pages=462-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13030462&rft_dat=%3Cgale_proqu%3EA743761511%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-abd38e981b019f101323bb6c3583067221bcb84cf75e76532512a558472c54063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791598456&rft_id=info:pmid/&rft_galeid=A743761511&rfr_iscdi=true