Loading…
An Experimental and Simulation Study for Comparison of the Sensitivity of Different Non-Destructive Capacitive Sensors in a Stratified Two-Phase Flow Regime
Measuring the volume fraction of each phase in multi-phase flows is an essential problem in petrochemical industries. One of the standard flow regimes is stratified two-phase flow, which occurs when two immiscible fluids are present in a pipeline. In this paper, we performed several experiments on v...
Saved in:
Published in: | Electronics (Basel) 2023-03, Vol.12 (6), p.1284 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring the volume fraction of each phase in multi-phase flows is an essential problem in petrochemical industries. One of the standard flow regimes is stratified two-phase flow, which occurs when two immiscible fluids are present in a pipeline. In this paper, we performed several experiments on vertical concave, horizontal concave, and double-ring sensors to benchmark obtained simulation results from modeling these sensors in stratified two-phase flow using COMSOL Multiphysics software. The simulation data was confirmed by experimental data. Due to the low number of data in the experimental method in order to extract more data, the mentioned software was used to extract more data and then compare the sensitivity of different directions of concave and double ring sensors. The simulation results show that the overall sensitivity of the concave is higher than the double-ring and the momentary sensitivity of the horizontal concave is higher in higher void fractions, and the vertical one has higher sensitivity in lower void fractions. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics12061284 |