Loading…
On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals
We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-02, Vol.270 (2), p.280-293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173 |
container_end_page | 293 |
container_issue | 2 |
container_start_page | 280 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 270 |
creator | Kuryliak, A. O. Sheremeta, M. M. |
description | We investigate the spaces of Laplace–Stieltjes integrals
I
σ
=
∫
0
∞
f
x
e
xσ
dF
x
,
σ ∈ ℝ,
F
is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and
f
is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series
D
σ
=
∑
n
=
1
∞
d
n
e
λ
n
σ
with nonnegative exponents λ
n
increasing to +∞ if
F
x
=
n
x
=
∑
λ
n
≤
x
1
,
and
f
(
x
) =
d
n
for
x
= λ
n
and f (
x
) = 0 for
x
≠ λ
n
. For a positive continuous function h on [0, +∞) that increases to +∞, by
LS
h
we denote a class of integrals
I
such that |
f
(
x
)| exp {
xh
(
x
)} → 0 as
x
→ + ∞ and define ‖
I
‖
h
= sup {|
f
(
x
)| exp {
xh
(
x
)} :
x
≥ 0}. We prove that if
F
∈
V
and ln
F
(
x
) =
o
(
x
) as
x
→ +∞, then (
LS
h
, ‖⋅‖
h
) is a nonuniformly convex Banach space. Some other properties of the space
LS
h
and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where
I
(σ) =
D
(σ). In addition, for fixed ϱ < +∞, we assume that
S
¯
ϱ
is a class of entire Dirichlet series
D
(σ) such that their generalized order
ϱ
α
,
β
D
≔
lim
sup
σ
→
+
∞
α
ln
M
σ
D
β
σ
≤
ϱ
,
where
M
σ
D
=
∑
n
=
1
∞
d
n
e
σ
λ
n
and the functions α and
β
are positive, continuous on [
x
0
, +∞), and increasing to +∞. Further, for
q
∈ ℕ, let
D
ϱ
;
q
=
∑
n
=
1
∞
d
n
exp
λ
n
β
−
1
α
λ
n
ϱ
+
1
/
q
,
d
D
1
D
2
=
∑
q
=
1
∞
1
2
q
D
1
−
D
2
ϱ
;
q
1
+
D
1
−
D
2
ϱ
;
q
.
The space with the metric d is denoted by
S
¯
ϱ
,
d
is a Fréchet space under certain conditions imposed on the functions α and
β
and the sequence (λ
n
). |
doi_str_mv | 10.1007/s10958-023-06346-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791648159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745166254</galeid><sourcerecordid>A745166254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</originalsourceid><addsrcrecordid>eNp9kc9KAzEQxhdRsFZfwNOCJw_RZPNvc6ylaqFQsHoOMTu73dJma7IFvfkOPoXP4Zv4JKZWkUKROczw8fsmTL4kOSX4gmAsLwPBiucIZxRhQZlAai_pEC4pyqXi-3HGMkOUSnaYHIUww9EkctpJBmOXXhln7DSdLI2FkBpXpNf-491Oof3VmjIdmeU8zp-vb5O2hnk7i_LQtVB5Mw_HyUEZG5z89G7ycD2479-i0fhm2O-NkKUiV4gCUxYLVhIBBRfU8oJjTnjBIM_hseAkNxQXAjCPKqeGl4oZaq1R0nAiaTc52-xd-uZpBaHVs2blXXxSZ1IRwXLC1R9VmTno2pVN641d1MHqnmScCJFxFim0g6rAQbyocVDWUd7iL3bwsQpY1Han4XzLEJkWntvKrELQw8ndNpttWOubEDyUeunrhfEvmmC9TlhvEtYxYf2dsF7fSTemEGFXgf_7jX9cX1wgpZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791648159</pqid></control><display><type>article</type><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><source>Springer Link</source><creator>Kuryliak, A. O. ; Sheremeta, M. M.</creator><creatorcontrib>Kuryliak, A. O. ; Sheremeta, M. M.</creatorcontrib><description>We investigate the spaces of Laplace–Stieltjes integrals
I
σ
=
∫
0
∞
f
x
e
xσ
dF
x
,
σ ∈ ℝ,
F
is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and
f
is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series
D
σ
=
∑
n
=
1
∞
d
n
e
λ
n
σ
with nonnegative exponents λ
n
increasing to +∞ if
F
x
=
n
x
=
∑
λ
n
≤
x
1
,
and
f
(
x
) =
d
n
for
x
= λ
n
and f (
x
) = 0 for
x
≠ λ
n
. For a positive continuous function h on [0, +∞) that increases to +∞, by
LS
h
we denote a class of integrals
I
such that |
f
(
x
)| exp {
xh
(
x
)} → 0 as
x
→ + ∞ and define ‖
I
‖
h
= sup {|
f
(
x
)| exp {
xh
(
x
)} :
x
≥ 0}. We prove that if
F
∈
V
and ln
F
(
x
) =
o
(
x
) as
x
→ +∞, then (
LS
h
, ‖⋅‖
h
) is a nonuniformly convex Banach space. Some other properties of the space
LS
h
and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where
I
(σ) =
D
(σ). In addition, for fixed ϱ < +∞, we assume that
S
¯
ϱ
is a class of entire Dirichlet series
D
(σ) such that their generalized order
ϱ
α
,
β
D
≔
lim
sup
σ
→
+
∞
α
ln
M
σ
D
β
σ
≤
ϱ
,
where
M
σ
D
=
∑
n
=
1
∞
d
n
e
σ
λ
n
and the functions α and
β
are positive, continuous on [
x
0
, +∞), and increasing to +∞. Further, for
q
∈ ℕ, let
D
ϱ
;
q
=
∑
n
=
1
∞
d
n
exp
λ
n
β
−
1
α
λ
n
ϱ
+
1
/
q
,
d
D
1
D
2
=
∑
q
=
1
∞
1
2
q
D
1
−
D
2
ϱ
;
q
1
+
D
1
−
D
2
ϱ
;
q
.
The space with the metric d is denoted by
S
¯
ϱ
,
d
is a Fréchet space under certain conditions imposed on the functions α and
β
and the sequence (λ
n
).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06346-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banach spaces ; Continuity (mathematics) ; Dirichlet problem ; Integrals ; Mathematical functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-02, Vol.270 (2), p.280-293</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuryliak, A. O.</creatorcontrib><creatorcontrib>Sheremeta, M. M.</creatorcontrib><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We investigate the spaces of Laplace–Stieltjes integrals
I
σ
=
∫
0
∞
f
x
e
xσ
dF
x
,
σ ∈ ℝ,
F
is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and
f
is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series
D
σ
=
∑
n
=
1
∞
d
n
e
λ
n
σ
with nonnegative exponents λ
n
increasing to +∞ if
F
x
=
n
x
=
∑
λ
n
≤
x
1
,
and
f
(
x
) =
d
n
for
x
= λ
n
and f (
x
) = 0 for
x
≠ λ
n
. For a positive continuous function h on [0, +∞) that increases to +∞, by
LS
h
we denote a class of integrals
I
such that |
f
(
x
)| exp {
xh
(
x
)} → 0 as
x
→ + ∞ and define ‖
I
‖
h
= sup {|
f
(
x
)| exp {
xh
(
x
)} :
x
≥ 0}. We prove that if
F
∈
V
and ln
F
(
x
) =
o
(
x
) as
x
→ +∞, then (
LS
h
, ‖⋅‖
h
) is a nonuniformly convex Banach space. Some other properties of the space
LS
h
and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where
I
(σ) =
D
(σ). In addition, for fixed ϱ < +∞, we assume that
S
¯
ϱ
is a class of entire Dirichlet series
D
(σ) such that their generalized order
ϱ
α
,
β
D
≔
lim
sup
σ
→
+
∞
α
ln
M
σ
D
β
σ
≤
ϱ
,
where
M
σ
D
=
∑
n
=
1
∞
d
n
e
σ
λ
n
and the functions α and
β
are positive, continuous on [
x
0
, +∞), and increasing to +∞. Further, for
q
∈ ℕ, let
D
ϱ
;
q
=
∑
n
=
1
∞
d
n
exp
λ
n
β
−
1
α
λ
n
ϱ
+
1
/
q
,
d
D
1
D
2
=
∑
q
=
1
∞
1
2
q
D
1
−
D
2
ϱ
;
q
1
+
D
1
−
D
2
ϱ
;
q
.
The space with the metric d is denoted by
S
¯
ϱ
,
d
is a Fréchet space under certain conditions imposed on the functions α and
β
and the sequence (λ
n
).</description><subject>Banach spaces</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>Integrals</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9KAzEQxhdRsFZfwNOCJw_RZPNvc6ylaqFQsHoOMTu73dJma7IFvfkOPoXP4Zv4JKZWkUKROczw8fsmTL4kOSX4gmAsLwPBiucIZxRhQZlAai_pEC4pyqXi-3HGMkOUSnaYHIUww9EkctpJBmOXXhln7DSdLI2FkBpXpNf-491Oof3VmjIdmeU8zp-vb5O2hnk7i_LQtVB5Mw_HyUEZG5z89G7ycD2479-i0fhm2O-NkKUiV4gCUxYLVhIBBRfU8oJjTnjBIM_hseAkNxQXAjCPKqeGl4oZaq1R0nAiaTc52-xd-uZpBaHVs2blXXxSZ1IRwXLC1R9VmTno2pVN641d1MHqnmScCJFxFim0g6rAQbyocVDWUd7iL3bwsQpY1Han4XzLEJkWntvKrELQw8ndNpttWOubEDyUeunrhfEvmmC9TlhvEtYxYf2dsF7fSTemEGFXgf_7jX9cX1wgpZM</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Kuryliak, A. O.</creator><creator>Sheremeta, M. M.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230209</creationdate><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><author>Kuryliak, A. O. ; Sheremeta, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>Integrals</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuryliak, A. O.</creatorcontrib><creatorcontrib>Sheremeta, M. M.</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuryliak, A. O.</au><au>Sheremeta, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-02-09</date><risdate>2023</risdate><volume>270</volume><issue>2</issue><spage>280</spage><epage>293</epage><pages>280-293</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We investigate the spaces of Laplace–Stieltjes integrals
I
σ
=
∫
0
∞
f
x
e
xσ
dF
x
,
σ ∈ ℝ,
F
is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and
f
is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series
D
σ
=
∑
n
=
1
∞
d
n
e
λ
n
σ
with nonnegative exponents λ
n
increasing to +∞ if
F
x
=
n
x
=
∑
λ
n
≤
x
1
,
and
f
(
x
) =
d
n
for
x
= λ
n
and f (
x
) = 0 for
x
≠ λ
n
. For a positive continuous function h on [0, +∞) that increases to +∞, by
LS
h
we denote a class of integrals
I
such that |
f
(
x
)| exp {
xh
(
x
)} → 0 as
x
→ + ∞ and define ‖
I
‖
h
= sup {|
f
(
x
)| exp {
xh
(
x
)} :
x
≥ 0}. We prove that if
F
∈
V
and ln
F
(
x
) =
o
(
x
) as
x
→ +∞, then (
LS
h
, ‖⋅‖
h
) is a nonuniformly convex Banach space. Some other properties of the space
LS
h
and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where
I
(σ) =
D
(σ). In addition, for fixed ϱ < +∞, we assume that
S
¯
ϱ
is a class of entire Dirichlet series
D
(σ) such that their generalized order
ϱ
α
,
β
D
≔
lim
sup
σ
→
+
∞
α
ln
M
σ
D
β
σ
≤
ϱ
,
where
M
σ
D
=
∑
n
=
1
∞
d
n
e
σ
λ
n
and the functions α and
β
are positive, continuous on [
x
0
, +∞), and increasing to +∞. Further, for
q
∈ ℕ, let
D
ϱ
;
q
=
∑
n
=
1
∞
d
n
exp
λ
n
β
−
1
α
λ
n
ϱ
+
1
/
q
,
d
D
1
D
2
=
∑
q
=
1
∞
1
2
q
D
1
−
D
2
ϱ
;
q
1
+
D
1
−
D
2
ϱ
;
q
.
The space with the metric d is denoted by
S
¯
ϱ
,
d
is a Fréchet space under certain conditions imposed on the functions α and
β
and the sequence (λ
n
).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06346-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-02, Vol.270 (2), p.280-293 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2791648159 |
source | Springer Link |
subjects | Banach spaces Continuity (mathematics) Dirichlet problem Integrals Mathematical functions Mathematics Mathematics and Statistics |
title | On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Banach%20Spaces%20and%20Fr%C3%A9chet%20Spaces%20of%20Laplace%E2%80%93Stieltjes%20Integrals&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kuryliak,%20A.%20O.&rft.date=2023-02-09&rft.volume=270&rft.issue=2&rft.spage=280&rft.epage=293&rft.pages=280-293&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06346-9&rft_dat=%3Cgale_proqu%3EA745166254%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791648159&rft_id=info:pmid/&rft_galeid=A745166254&rfr_iscdi=true |