Loading…

On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals

We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-02, Vol.270 (2), p.280-293
Main Authors: Kuryliak, A. O., Sheremeta, M. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173
container_end_page 293
container_issue 2
container_start_page 280
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 270
creator Kuryliak, A. O.
Sheremeta, M. M.
description We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n σ with nonnegative exponents λ n increasing to +∞ if F x = n x = ∑ λ n ≤ x 1 , and f ( x ) = d n for x = λ n and f ( x ) = 0 for x ≠ λ n . For a positive continuous function h on [0, +∞) that increases to +∞, by LS h we denote a class of integrals I such that | f ( x )| exp { xh ( x )} → 0 as  x  →  + ∞ and define ‖ I ‖ h  = sup {| f ( x )| exp { xh ( x )} :  x  ≥ 0}. We prove that if F ∈ V and ln F ( x ) = o ( x ) as x → +∞, then ( LS h , ‖⋅‖ h ) is a nonuniformly convex Banach space. Some other properties of the space LS h and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where I (σ) = D (σ). In addition, for fixed ϱ < +∞, we assume that S ¯ ϱ is a class of entire Dirichlet series D (σ) such that their generalized order ϱ α , β D ≔ lim sup σ → + ∞ α ln M σ D β σ ≤ ϱ , where M σ D = ∑ n = 1 ∞ d n e σ λ n and the functions α and β are positive, continuous on [ x 0 , +∞), and increasing to +∞. Further, for q ∈ ℕ, let D ϱ ; q = ∑ n = 1 ∞ d n exp λ n β − 1 α λ n ϱ + 1 / q , d D 1 D 2 = ∑ q = 1 ∞ 1 2 q D 1 − D 2 ϱ ; q 1 + D 1 − D 2 ϱ ; q . The space with the metric d is denoted by S ¯ ϱ , d is a Fréchet space under certain conditions imposed on the functions α and β and the sequence (λ n ).
doi_str_mv 10.1007/s10958-023-06346-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791648159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745166254</galeid><sourcerecordid>A745166254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</originalsourceid><addsrcrecordid>eNp9kc9KAzEQxhdRsFZfwNOCJw_RZPNvc6ylaqFQsHoOMTu73dJma7IFvfkOPoXP4Zv4JKZWkUKROczw8fsmTL4kOSX4gmAsLwPBiucIZxRhQZlAai_pEC4pyqXi-3HGMkOUSnaYHIUww9EkctpJBmOXXhln7DSdLI2FkBpXpNf-491Oof3VmjIdmeU8zp-vb5O2hnk7i_LQtVB5Mw_HyUEZG5z89G7ycD2479-i0fhm2O-NkKUiV4gCUxYLVhIBBRfU8oJjTnjBIM_hseAkNxQXAjCPKqeGl4oZaq1R0nAiaTc52-xd-uZpBaHVs2blXXxSZ1IRwXLC1R9VmTno2pVN641d1MHqnmScCJFxFim0g6rAQbyocVDWUd7iL3bwsQpY1Han4XzLEJkWntvKrELQw8ndNpttWOubEDyUeunrhfEvmmC9TlhvEtYxYf2dsF7fSTemEGFXgf_7jX9cX1wgpZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791648159</pqid></control><display><type>article</type><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><source>Springer Link</source><creator>Kuryliak, A. O. ; Sheremeta, M. M.</creator><creatorcontrib>Kuryliak, A. O. ; Sheremeta, M. M.</creatorcontrib><description>We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n σ with nonnegative exponents λ n increasing to +∞ if F x = n x = ∑ λ n ≤ x 1 , and f ( x ) = d n for x = λ n and f ( x ) = 0 for x ≠ λ n . For a positive continuous function h on [0, +∞) that increases to +∞, by LS h we denote a class of integrals I such that | f ( x )| exp { xh ( x )} → 0 as  x  →  + ∞ and define ‖ I ‖ h  = sup {| f ( x )| exp { xh ( x )} :  x  ≥ 0}. We prove that if F ∈ V and ln F ( x ) = o ( x ) as x → +∞, then ( LS h , ‖⋅‖ h ) is a nonuniformly convex Banach space. Some other properties of the space LS h and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where I (σ) = D (σ). In addition, for fixed ϱ &lt; +∞, we assume that S ¯ ϱ is a class of entire Dirichlet series D (σ) such that their generalized order ϱ α , β D ≔ lim sup σ → + ∞ α ln M σ D β σ ≤ ϱ , where M σ D = ∑ n = 1 ∞ d n e σ λ n and the functions α and β are positive, continuous on [ x 0 , +∞), and increasing to +∞. Further, for q ∈ ℕ, let D ϱ ; q = ∑ n = 1 ∞ d n exp λ n β − 1 α λ n ϱ + 1 / q , d D 1 D 2 = ∑ q = 1 ∞ 1 2 q D 1 − D 2 ϱ ; q 1 + D 1 − D 2 ϱ ; q . The space with the metric d is denoted by S ¯ ϱ , d is a Fréchet space under certain conditions imposed on the functions α and β and the sequence (λ n ).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06346-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banach spaces ; Continuity (mathematics) ; Dirichlet problem ; Integrals ; Mathematical functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-02, Vol.270 (2), p.280-293</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuryliak, A. O.</creatorcontrib><creatorcontrib>Sheremeta, M. M.</creatorcontrib><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n σ with nonnegative exponents λ n increasing to +∞ if F x = n x = ∑ λ n ≤ x 1 , and f ( x ) = d n for x = λ n and f ( x ) = 0 for x ≠ λ n . For a positive continuous function h on [0, +∞) that increases to +∞, by LS h we denote a class of integrals I such that | f ( x )| exp { xh ( x )} → 0 as  x  →  + ∞ and define ‖ I ‖ h  = sup {| f ( x )| exp { xh ( x )} :  x  ≥ 0}. We prove that if F ∈ V and ln F ( x ) = o ( x ) as x → +∞, then ( LS h , ‖⋅‖ h ) is a nonuniformly convex Banach space. Some other properties of the space LS h and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where I (σ) = D (σ). In addition, for fixed ϱ &lt; +∞, we assume that S ¯ ϱ is a class of entire Dirichlet series D (σ) such that their generalized order ϱ α , β D ≔ lim sup σ → + ∞ α ln M σ D β σ ≤ ϱ , where M σ D = ∑ n = 1 ∞ d n e σ λ n and the functions α and β are positive, continuous on [ x 0 , +∞), and increasing to +∞. Further, for q ∈ ℕ, let D ϱ ; q = ∑ n = 1 ∞ d n exp λ n β − 1 α λ n ϱ + 1 / q , d D 1 D 2 = ∑ q = 1 ∞ 1 2 q D 1 − D 2 ϱ ; q 1 + D 1 − D 2 ϱ ; q . The space with the metric d is denoted by S ¯ ϱ , d is a Fréchet space under certain conditions imposed on the functions α and β and the sequence (λ n ).</description><subject>Banach spaces</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>Integrals</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9KAzEQxhdRsFZfwNOCJw_RZPNvc6ylaqFQsHoOMTu73dJma7IFvfkOPoXP4Zv4JKZWkUKROczw8fsmTL4kOSX4gmAsLwPBiucIZxRhQZlAai_pEC4pyqXi-3HGMkOUSnaYHIUww9EkctpJBmOXXhln7DSdLI2FkBpXpNf-491Oof3VmjIdmeU8zp-vb5O2hnk7i_LQtVB5Mw_HyUEZG5z89G7ycD2479-i0fhm2O-NkKUiV4gCUxYLVhIBBRfU8oJjTnjBIM_hseAkNxQXAjCPKqeGl4oZaq1R0nAiaTc52-xd-uZpBaHVs2blXXxSZ1IRwXLC1R9VmTno2pVN641d1MHqnmScCJFxFim0g6rAQbyocVDWUd7iL3bwsQpY1Han4XzLEJkWntvKrELQw8ndNpttWOubEDyUeunrhfEvmmC9TlhvEtYxYf2dsF7fSTemEGFXgf_7jX9cX1wgpZM</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Kuryliak, A. O.</creator><creator>Sheremeta, M. M.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230209</creationdate><title>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</title><author>Kuryliak, A. O. ; Sheremeta, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>Integrals</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuryliak, A. O.</creatorcontrib><creatorcontrib>Sheremeta, M. M.</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuryliak, A. O.</au><au>Sheremeta, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-02-09</date><risdate>2023</risdate><volume>270</volume><issue>2</issue><spage>280</spage><epage>293</epage><pages>280-293</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We investigate the spaces of Laplace–Stieltjes integrals I σ = ∫ 0 ∞ f x e xσ dF x , σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series D σ = ∑ n = 1 ∞ d n e λ n σ with nonnegative exponents λ n increasing to +∞ if F x = n x = ∑ λ n ≤ x 1 , and f ( x ) = d n for x = λ n and f ( x ) = 0 for x ≠ λ n . For a positive continuous function h on [0, +∞) that increases to +∞, by LS h we denote a class of integrals I such that | f ( x )| exp { xh ( x )} → 0 as  x  →  + ∞ and define ‖ I ‖ h  = sup {| f ( x )| exp { xh ( x )} :  x  ≥ 0}. We prove that if F ∈ V and ln F ( x ) = o ( x ) as x → +∞, then ( LS h , ‖⋅‖ h ) is a nonuniformly convex Banach space. Some other properties of the space LS h and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where I (σ) = D (σ). In addition, for fixed ϱ &lt; +∞, we assume that S ¯ ϱ is a class of entire Dirichlet series D (σ) such that their generalized order ϱ α , β D ≔ lim sup σ → + ∞ α ln M σ D β σ ≤ ϱ , where M σ D = ∑ n = 1 ∞ d n e σ λ n and the functions α and β are positive, continuous on [ x 0 , +∞), and increasing to +∞. Further, for q ∈ ℕ, let D ϱ ; q = ∑ n = 1 ∞ d n exp λ n β − 1 α λ n ϱ + 1 / q , d D 1 D 2 = ∑ q = 1 ∞ 1 2 q D 1 − D 2 ϱ ; q 1 + D 1 − D 2 ϱ ; q . The space with the metric d is denoted by S ¯ ϱ , d is a Fréchet space under certain conditions imposed on the functions α and β and the sequence (λ n ).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06346-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2023-02, Vol.270 (2), p.280-293
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2791648159
source Springer Link
subjects Banach spaces
Continuity (mathematics)
Dirichlet problem
Integrals
Mathematical functions
Mathematics
Mathematics and Statistics
title On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Banach%20Spaces%20and%20Fr%C3%A9chet%20Spaces%20of%20Laplace%E2%80%93Stieltjes%20Integrals&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kuryliak,%20A.%20O.&rft.date=2023-02-09&rft.volume=270&rft.issue=2&rft.spage=280&rft.epage=293&rft.pages=280-293&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06346-9&rft_dat=%3Cgale_proqu%3EA745166254%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3689-3e49c064f16ed563c5d50515d4e88ebd518a30d6e0551553a5f94a3cca97a5173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791648159&rft_id=info:pmid/&rft_galeid=A745166254&rfr_iscdi=true