Loading…

Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces

We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in do...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations 2023, Vol.59 (1), p.34-50
Main Authors: Kozhevnikova, L. M., Kashnikova, A. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3
cites cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3
container_end_page 50
container_issue 1
container_start_page 34
container_title Differential equations
container_volume 59
creator Kozhevnikova, L. M.
Kashnikova, A. P.
description We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.
doi_str_mv 10.1134/S0012266123010044
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791649056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743341748</galeid><sourcerecordid>A743341748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</originalsourceid><addsrcrecordid>eNp1kctKJDEUhoM4YOv4AO4CrsvJpTpJL0VaHfAyTM-si1TqRKKppEyqhHblO_iGPolpWnAhchYHzv9_58JB6IiSE0p5_WtFCGVMCMo4oYTU9Q6aUUFUxYniu2i2kauNvof2c74nhCwknc9Qv3yc3JP2EAzgaPEyjCkOa6xDh_9CiKnX3j1Dh1fRT6OLIW9cGt_E4F0AnfDSezeMzuA_KbYeeuwCvp6yA68f3l5eb5N35hmvBm0g_0Q_rPYZDj_yAfp_vvx3dlld3V78Pju9qgxT87FqmTKylbRlQinCeccElApwqQXlxhJrVWe7uZQSOm5Za4XkrFMLAVoTpvkBOt72HVJ8nCCPzX2cUigjGyYXVNQLMhfFdbJ13ZX7GxdsHJM2JTronYkBrCv1U1lzXlNZqwLQLWBSzDmBbYbkep3WDSXN5g3NlzcUhm2ZXLzhDtLnKt9D70t6iqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791649056</pqid></control><display><type>article</type><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><source>Springer Nature</source><creator>Kozhevnikova, L. M. ; Kashnikova, A. P.</creator><creatorcontrib>Kozhevnikova, L. M. ; Kashnikova, A. P.</creatorcontrib><description>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123010044</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Dirichlet problem ; Elliptic functions ; Entropy ; Equivalence ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Ordinary Differential Equations ; Partial Differential Equations ; Sobolev space</subject><ispartof>Differential equations, 2023, Vol.59 (1), p.34-50</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</citedby><cites>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kozhevnikova, L. M.</creatorcontrib><creatorcontrib>Kashnikova, A. P.</creatorcontrib><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctKJDEUhoM4YOv4AO4CrsvJpTpJL0VaHfAyTM-si1TqRKKppEyqhHblO_iGPolpWnAhchYHzv9_58JB6IiSE0p5_WtFCGVMCMo4oYTU9Q6aUUFUxYniu2i2kauNvof2c74nhCwknc9Qv3yc3JP2EAzgaPEyjCkOa6xDh_9CiKnX3j1Dh1fRT6OLIW9cGt_E4F0AnfDSezeMzuA_KbYeeuwCvp6yA68f3l5eb5N35hmvBm0g_0Q_rPYZDj_yAfp_vvx3dlld3V78Pju9qgxT87FqmTKylbRlQinCeccElApwqQXlxhJrVWe7uZQSOm5Za4XkrFMLAVoTpvkBOt72HVJ8nCCPzX2cUigjGyYXVNQLMhfFdbJ13ZX7GxdsHJM2JTronYkBrCv1U1lzXlNZqwLQLWBSzDmBbYbkep3WDSXN5g3NlzcUhm2ZXLzhDtLnKt9D70t6iqY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kozhevnikova, L. M.</creator><creator>Kashnikova, A. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2023</creationdate><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><author>Kozhevnikova, L. M. ; Kashnikova, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhevnikova, L. M.</creatorcontrib><creatorcontrib>Kashnikova, A. P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhevnikova, L. M.</au><au>Kashnikova, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>34</spage><epage>50</epage><pages>34-50</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123010044</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023, Vol.59 (1), p.34-50
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2791649056
source Springer Nature
subjects Difference and Functional Equations
Differential equations
Dirichlet problem
Elliptic functions
Entropy
Equivalence
Mathematics
Mathematics and Statistics
Nonlinearity
Ordinary Differential Equations
Partial Differential Equations
Sobolev space
title Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20of%20Entropy%20and%20Renormalized%20Solutions%20of%20a%20Nonlinear%20Elliptic%20Problem%20in%20Musielak%E2%80%93Orlicz%20Spaces&rft.jtitle=Differential%20equations&rft.au=Kozhevnikova,%20L.%20M.&rft.date=2023&rft.volume=59&rft.issue=1&rft.spage=34&rft.epage=50&rft.pages=34-50&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123010044&rft_dat=%3Cgale_proqu%3EA743341748%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791649056&rft_id=info:pmid/&rft_galeid=A743341748&rfr_iscdi=true