Loading…
Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces
We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space . In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in do...
Saved in:
Published in: | Differential equations 2023, Vol.59 (1), p.34-50 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3 |
container_end_page | 50 |
container_issue | 1 |
container_start_page | 34 |
container_title | Differential equations |
container_volume | 59 |
creator | Kozhevnikova, L. M. Kashnikova, A. P. |
description | We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space
. In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved. |
doi_str_mv | 10.1134/S0012266123010044 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791649056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743341748</galeid><sourcerecordid>A743341748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</originalsourceid><addsrcrecordid>eNp1kctKJDEUhoM4YOv4AO4CrsvJpTpJL0VaHfAyTM-si1TqRKKppEyqhHblO_iGPolpWnAhchYHzv9_58JB6IiSE0p5_WtFCGVMCMo4oYTU9Q6aUUFUxYniu2i2kauNvof2c74nhCwknc9Qv3yc3JP2EAzgaPEyjCkOa6xDh_9CiKnX3j1Dh1fRT6OLIW9cGt_E4F0AnfDSezeMzuA_KbYeeuwCvp6yA68f3l5eb5N35hmvBm0g_0Q_rPYZDj_yAfp_vvx3dlld3V78Pju9qgxT87FqmTKylbRlQinCeccElApwqQXlxhJrVWe7uZQSOm5Za4XkrFMLAVoTpvkBOt72HVJ8nCCPzX2cUigjGyYXVNQLMhfFdbJ13ZX7GxdsHJM2JTronYkBrCv1U1lzXlNZqwLQLWBSzDmBbYbkep3WDSXN5g3NlzcUhm2ZXLzhDtLnKt9D70t6iqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791649056</pqid></control><display><type>article</type><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><source>Springer Nature</source><creator>Kozhevnikova, L. M. ; Kashnikova, A. P.</creator><creatorcontrib>Kozhevnikova, L. M. ; Kashnikova, A. P.</creatorcontrib><description>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space
. In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123010044</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Dirichlet problem ; Elliptic functions ; Entropy ; Equivalence ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Ordinary Differential Equations ; Partial Differential Equations ; Sobolev space</subject><ispartof>Differential equations, 2023, Vol.59 (1), p.34-50</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</citedby><cites>FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kozhevnikova, L. M.</creatorcontrib><creatorcontrib>Kashnikova, A. P.</creatorcontrib><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space
. In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctKJDEUhoM4YOv4AO4CrsvJpTpJL0VaHfAyTM-si1TqRKKppEyqhHblO_iGPolpWnAhchYHzv9_58JB6IiSE0p5_WtFCGVMCMo4oYTU9Q6aUUFUxYniu2i2kauNvof2c74nhCwknc9Qv3yc3JP2EAzgaPEyjCkOa6xDh_9CiKnX3j1Dh1fRT6OLIW9cGt_E4F0AnfDSezeMzuA_KbYeeuwCvp6yA68f3l5eb5N35hmvBm0g_0Q_rPYZDj_yAfp_vvx3dlld3V78Pju9qgxT87FqmTKylbRlQinCeccElApwqQXlxhJrVWe7uZQSOm5Za4XkrFMLAVoTpvkBOt72HVJ8nCCPzX2cUigjGyYXVNQLMhfFdbJ13ZX7GxdsHJM2JTronYkBrCv1U1lzXlNZqwLQLWBSzDmBbYbkep3WDSXN5g3NlzcUhm2ZXLzhDtLnKt9D70t6iqY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kozhevnikova, L. M.</creator><creator>Kashnikova, A. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2023</creationdate><title>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</title><author>Kozhevnikova, L. M. ; Kashnikova, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhevnikova, L. M.</creatorcontrib><creatorcontrib>Kashnikova, A. P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhevnikova, L. M.</au><au>Kashnikova, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>34</spage><epage>50</epage><pages>34-50</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space
. In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123010044</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2023, Vol.59 (1), p.34-50 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2791649056 |
source | Springer Nature |
subjects | Difference and Functional Equations Differential equations Dirichlet problem Elliptic functions Entropy Equivalence Mathematics Mathematics and Statistics Nonlinearity Ordinary Differential Equations Partial Differential Equations Sobolev space |
title | Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20of%20Entropy%20and%20Renormalized%20Solutions%20of%20a%20Nonlinear%20Elliptic%20Problem%20in%20Musielak%E2%80%93Orlicz%20Spaces&rft.jtitle=Differential%20equations&rft.au=Kozhevnikova,%20L.%20M.&rft.date=2023&rft.volume=59&rft.issue=1&rft.spage=34&rft.epage=50&rft.pages=34-50&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123010044&rft_dat=%3Cgale_proqu%3EA743341748%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-b28c7b71b2688033d26e8c7e37a613cf0ff8dfd5777ed3f2bf6732d896eaa02a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791649056&rft_id=info:pmid/&rft_galeid=A743341748&rfr_iscdi=true |