Loading…
Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys
AlSiMgMn- x Cu ( x = 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigat...
Saved in:
Published in: | JOM (1989) 2023-04, Vol.75 (4), p.1345-1356 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3 |
container_end_page | 1356 |
container_issue | 4 |
container_start_page | 1345 |
container_title | JOM (1989) |
container_volume | 75 |
creator | Liu, Fei Zheng, Huiting Jiang, Yuanhang Zhao, Haidong |
description | AlSiMgMn-
x
Cu (
x
= 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigated. The results indicated that the microstructure under the as-cast state consists of α-Al, eutectic Si, β-Mg
2
Si, Q-Al
5
Cu
2
Mg
8
Si
6
, and θ-Al
2
Cu phases. Increasing the Cu content brought about an apparent change in the main precipitate of the alloys after T6 heat treatment. When the Cu content is 0.1 wt.%, the precipitate is only β′′ phase. As the Cu content increases to 0.3 wt.% and 0.6 wt.%, the β′′ and Q′ phases were co-precipitated in the α-Al matrix. As the Cu content further increases to 0.8 wt.%, the θ′ and Q′ phases were co-precipitated in the α-Al matrix and the predominant precipitate was the θ′ phase. As the content of Cu increases from 0.1 wt.% to 0.8 wt.%, the yield strength and ultimate tensile strength after T6 heat treatment increase to 241 MPa and 366 MPa, respectively. Meanwhile, the elongation increases to 8.2%. The improved mechanical properties are mainly attributed to the co-precipitation of the β′′, Q′, and θ′ phases. |
doi_str_mv | 10.1007/s11837-022-05651-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791694866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791694866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcLLE2eBNnMQ5VuFRpFYgUbharrNpU7VxsR2h9sqP47RI3LjsjlYzs5qJomtgt8BYfucARJJTFseUpVkKdH8SDSDlCQWRwmnAjOeUi0ScRxfOrVgQ8QIG0fdDXaP2xNRkYr5I2ZHStB5bT1RbkTEqT2Y2zE1_Mi3xSyTTRlvjvO207yweiFPUS9U2Wq3JqzVbtL5B15uOm8WSfijddRty3yAtlfNktH5rpotpG8Da7NxldFartcOr3z2M3h8fZuWYTl6ensvRhOoECk9RZTkCB6F4KuIijpVAAM3mVYiVKFazas4qFc-xqJOaV9kcBEeBGnmKjGMyjG6OvltrPjt0Xq5MZ9vwUsZ5AVnBRZYFVnxk9SGdxVpubbNRdieByb5seSxbhrLloWy5D6LkKHKB3C7Q_ln_o_oBZvqDbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791694866</pqid></control><display><type>article</type><title>Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys</title><source>Springer Nature</source><creator>Liu, Fei ; Zheng, Huiting ; Jiang, Yuanhang ; Zhao, Haidong</creator><creatorcontrib>Liu, Fei ; Zheng, Huiting ; Jiang, Yuanhang ; Zhao, Haidong</creatorcontrib><description>AlSiMgMn-
x
Cu (
x
= 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigated. The results indicated that the microstructure under the as-cast state consists of α-Al, eutectic Si, β-Mg
2
Si, Q-Al
5
Cu
2
Mg
8
Si
6
, and θ-Al
2
Cu phases. Increasing the Cu content brought about an apparent change in the main precipitate of the alloys after T6 heat treatment. When the Cu content is 0.1 wt.%, the precipitate is only β′′ phase. As the Cu content increases to 0.3 wt.% and 0.6 wt.%, the β′′ and Q′ phases were co-precipitated in the α-Al matrix. As the Cu content further increases to 0.8 wt.%, the θ′ and Q′ phases were co-precipitated in the α-Al matrix and the predominant precipitate was the θ′ phase. As the content of Cu increases from 0.1 wt.% to 0.8 wt.%, the yield strength and ultimate tensile strength after T6 heat treatment increase to 241 MPa and 366 MPa, respectively. Meanwhile, the elongation increases to 8.2%. The improved mechanical properties are mainly attributed to the co-precipitation of the β′′, Q′, and θ′ phases.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05651-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Alloys ; Aluminum base alloys ; Chemistry/Food Science ; Copper ; Corrosion resistance ; Crack initiation ; Die casting ; Earth Sciences ; Elongation ; Engineering ; Environment ; Foundry practice ; Grain boundaries ; Heat treatment ; Magnesium compounds ; Mechanical properties ; Metal silicides ; Microstructure ; Morphology ; Phases ; Physics ; Silicon ; Technical Article ; Tensile strength ; Transmission electron microscopy ; Ultimate tensile strength</subject><ispartof>JOM (1989), 2023-04, Vol.75 (4), p.1345-1356</ispartof><rights>The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Apr 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3</citedby><cites>FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zheng, Huiting</creatorcontrib><creatorcontrib>Jiang, Yuanhang</creatorcontrib><creatorcontrib>Zhao, Haidong</creatorcontrib><title>Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>AlSiMgMn-
x
Cu (
x
= 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigated. The results indicated that the microstructure under the as-cast state consists of α-Al, eutectic Si, β-Mg
2
Si, Q-Al
5
Cu
2
Mg
8
Si
6
, and θ-Al
2
Cu phases. Increasing the Cu content brought about an apparent change in the main precipitate of the alloys after T6 heat treatment. When the Cu content is 0.1 wt.%, the precipitate is only β′′ phase. As the Cu content increases to 0.3 wt.% and 0.6 wt.%, the β′′ and Q′ phases were co-precipitated in the α-Al matrix. As the Cu content further increases to 0.8 wt.%, the θ′ and Q′ phases were co-precipitated in the α-Al matrix and the predominant precipitate was the θ′ phase. As the content of Cu increases from 0.1 wt.% to 0.8 wt.%, the yield strength and ultimate tensile strength after T6 heat treatment increase to 241 MPa and 366 MPa, respectively. Meanwhile, the elongation increases to 8.2%. The improved mechanical properties are mainly attributed to the co-precipitation of the β′′, Q′, and θ′ phases.</description><subject>Aging</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Die casting</subject><subject>Earth Sciences</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Environment</subject><subject>Foundry practice</subject><subject>Grain boundaries</subject><subject>Heat treatment</subject><subject>Magnesium compounds</subject><subject>Mechanical properties</subject><subject>Metal silicides</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Phases</subject><subject>Physics</subject><subject>Silicon</subject><subject>Technical Article</subject><subject>Tensile strength</subject><subject>Transmission electron microscopy</subject><subject>Ultimate tensile strength</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIlMIPcLLE2eBNnMQ5VuFRpFYgUbharrNpU7VxsR2h9sqP47RI3LjsjlYzs5qJomtgt8BYfucARJJTFseUpVkKdH8SDSDlCQWRwmnAjOeUi0ScRxfOrVgQ8QIG0fdDXaP2xNRkYr5I2ZHStB5bT1RbkTEqT2Y2zE1_Mi3xSyTTRlvjvO207yweiFPUS9U2Wq3JqzVbtL5B15uOm8WSfijddRty3yAtlfNktH5rpotpG8Da7NxldFartcOr3z2M3h8fZuWYTl6ensvRhOoECk9RZTkCB6F4KuIijpVAAM3mVYiVKFazas4qFc-xqJOaV9kcBEeBGnmKjGMyjG6OvltrPjt0Xq5MZ9vwUsZ5AVnBRZYFVnxk9SGdxVpubbNRdieByb5seSxbhrLloWy5D6LkKHKB3C7Q_ln_o_oBZvqDbw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Fei</creator><creator>Zheng, Huiting</creator><creator>Jiang, Yuanhang</creator><creator>Zhao, Haidong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230401</creationdate><title>Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys</title><author>Liu, Fei ; Zheng, Huiting ; Jiang, Yuanhang ; Zhao, Haidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Die casting</topic><topic>Earth Sciences</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Environment</topic><topic>Foundry practice</topic><topic>Grain boundaries</topic><topic>Heat treatment</topic><topic>Magnesium compounds</topic><topic>Mechanical properties</topic><topic>Metal silicides</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Phases</topic><topic>Physics</topic><topic>Silicon</topic><topic>Technical Article</topic><topic>Tensile strength</topic><topic>Transmission electron microscopy</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zheng, Huiting</creatorcontrib><creatorcontrib>Jiang, Yuanhang</creatorcontrib><creatorcontrib>Zhao, Haidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM trade & industry</collection><collection>ProQuest Science Journals</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fei</au><au>Zheng, Huiting</au><au>Jiang, Yuanhang</au><au>Zhao, Haidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>75</volume><issue>4</issue><spage>1345</spage><epage>1356</epage><pages>1345-1356</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>AlSiMgMn-
x
Cu (
x
= 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigated. The results indicated that the microstructure under the as-cast state consists of α-Al, eutectic Si, β-Mg
2
Si, Q-Al
5
Cu
2
Mg
8
Si
6
, and θ-Al
2
Cu phases. Increasing the Cu content brought about an apparent change in the main precipitate of the alloys after T6 heat treatment. When the Cu content is 0.1 wt.%, the precipitate is only β′′ phase. As the Cu content increases to 0.3 wt.% and 0.6 wt.%, the β′′ and Q′ phases were co-precipitated in the α-Al matrix. As the Cu content further increases to 0.8 wt.%, the θ′ and Q′ phases were co-precipitated in the α-Al matrix and the predominant precipitate was the θ′ phase. As the content of Cu increases from 0.1 wt.% to 0.8 wt.%, the yield strength and ultimate tensile strength after T6 heat treatment increase to 241 MPa and 366 MPa, respectively. Meanwhile, the elongation increases to 8.2%. The improved mechanical properties are mainly attributed to the co-precipitation of the β′′, Q′, and θ′ phases.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05651-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2023-04, Vol.75 (4), p.1345-1356 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2791694866 |
source | Springer Nature |
subjects | Aging Alloys Aluminum base alloys Chemistry/Food Science Copper Corrosion resistance Crack initiation Die casting Earth Sciences Elongation Engineering Environment Foundry practice Grain boundaries Heat treatment Magnesium compounds Mechanical properties Metal silicides Microstructure Morphology Phases Physics Silicon Technical Article Tensile strength Transmission electron microscopy Ultimate tensile strength |
title | Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Low%20Cu%20Content%20and%20Heat%20Treatment%20on%20the%20Microstructure%20and%20Mechanical%20Properties%20of%20High-Vacuum%20Die-Cast%20AlSiMgMn%20Alloys&rft.jtitle=JOM%20(1989)&rft.au=Liu,%20Fei&rft.date=2023-04-01&rft.volume=75&rft.issue=4&rft.spage=1345&rft.epage=1356&rft.pages=1345-1356&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05651-z&rft_dat=%3Cproquest_cross%3E2791694866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ea67e1418a4582922a8e11c0bd8383a0f0db0da2be9f3f4d6b184e8ece45e04e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791694866&rft_id=info:pmid/&rfr_iscdi=true |