Loading…
The Influence of Sample Size on Long-Term Performance of a 6σ Process
There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, a...
Saved in:
Published in: | Processes 2023-03, Vol.11 (3), p.779 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13 |
container_end_page | |
container_issue | 3 |
container_start_page | 779 |
container_title | Processes |
container_volume | 11 |
creator | Boroiu, Andrei Alexandru Titu, Aurel Mihail Boroiu, Alexandru Dragomir, Mihai Pop, Alina Bianca Titu, Stefan |
description | There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, and the first result obtained is that a stable process can reach a maximum drift, but its value depends on the volume of the sample. It is also highlighted that, using only the criterion “values outside the control limits” for monitoring stability through the Xbar chart, a minimum value can be calculated for the long-term performance of a process depending on the sample size. The main conclusion resulting from the calculations is that, in the case of a 6σ process, the long-term performance is much better than the established value of 3400 PPB: For small volume samples of two pieces it is below 700 PPB, for three pieces it is below 200 PPB, and for samples with a volume greater than or equal to four pieces the performance already reaches values below 100 PPB! So, the long-term performance of 6σ processes is certainly even better than the known value of 3.4 PPM. |
doi_str_mv | 10.3390/pr11030779 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791710445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935364</galeid><sourcerecordid>A743935364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13</originalsourceid><addsrcrecordid>eNpNkM9KAzEQxoMoWGovPkHAm7A12ckmm2MpVgsFC63nJZtO6pbdTU3ag159QF_JSAs6c5g_fL8Z-Ai55WwMoNnDPnDOgCmlL8ggz3OVacXV5b_-moxi3LEUmkNZyAGZrd-QznvXHrG3SL2jK9PtW6Sr5jONPV34fputMXR0icH50JmzzlD5_UWXwVuM8YZcOdNGHJ3rkLzOHtfT52zx8jSfThaZBRCHTBYm17bIrZK8Bl6WG4GydjwvrNKurm0NTtSGS1cA10wILLWQpQHBLHOGw5Dcne7ug38_YjxUO38MfXpZ5UpzxRNTJNX4pNqaFqumd_4QjE25wa6xvkfXpP1ECdBQgBQJuD8BNvgYA7pqH5rOhI-Ks-rX2-rPW_gBZ7ppTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791710445</pqid></control><display><type>article</type><title>The Influence of Sample Size on Long-Term Performance of a 6σ Process</title><source>Publicly Available Content (ProQuest)</source><creator>Boroiu, Andrei Alexandru ; Titu, Aurel Mihail ; Boroiu, Alexandru ; Dragomir, Mihai ; Pop, Alina Bianca ; Titu, Stefan</creator><creatorcontrib>Boroiu, Andrei Alexandru ; Titu, Aurel Mihail ; Boroiu, Alexandru ; Dragomir, Mihai ; Pop, Alina Bianca ; Titu, Stefan</creatorcontrib><description>There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, and the first result obtained is that a stable process can reach a maximum drift, but its value depends on the volume of the sample. It is also highlighted that, using only the criterion “values outside the control limits” for monitoring stability through the Xbar chart, a minimum value can be calculated for the long-term performance of a process depending on the sample size. The main conclusion resulting from the calculations is that, in the case of a 6σ process, the long-term performance is much better than the established value of 3400 PPB: For small volume samples of two pieces it is below 700 PPB, for three pieces it is below 200 PPB, and for samples with a volume greater than or equal to four pieces the performance already reaches values below 100 PPB! So, the long-term performance of 6σ processes is certainly even better than the known value of 3.4 PPM.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030779</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Control limits ; Lean manufacturing ; Mathematical analysis ; Quality improvement ; Sample size ; Six Sigma</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.779</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13</citedby><cites>FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13</cites><orcidid>0000-0002-6908-5546 ; 0000-0003-0561-4274 ; 0000-0002-4784-8485 ; 0000-0001-7313-3398 ; 0000-0002-0054-6535 ; 0000-0001-5910-8137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791710445/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791710445?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Boroiu, Andrei Alexandru</creatorcontrib><creatorcontrib>Titu, Aurel Mihail</creatorcontrib><creatorcontrib>Boroiu, Alexandru</creatorcontrib><creatorcontrib>Dragomir, Mihai</creatorcontrib><creatorcontrib>Pop, Alina Bianca</creatorcontrib><creatorcontrib>Titu, Stefan</creatorcontrib><title>The Influence of Sample Size on Long-Term Performance of a 6σ Process</title><title>Processes</title><description>There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, and the first result obtained is that a stable process can reach a maximum drift, but its value depends on the volume of the sample. It is also highlighted that, using only the criterion “values outside the control limits” for monitoring stability through the Xbar chart, a minimum value can be calculated for the long-term performance of a process depending on the sample size. The main conclusion resulting from the calculations is that, in the case of a 6σ process, the long-term performance is much better than the established value of 3400 PPB: For small volume samples of two pieces it is below 700 PPB, for three pieces it is below 200 PPB, and for samples with a volume greater than or equal to four pieces the performance already reaches values below 100 PPB! So, the long-term performance of 6σ processes is certainly even better than the known value of 3.4 PPM.</description><subject>Control limits</subject><subject>Lean manufacturing</subject><subject>Mathematical analysis</subject><subject>Quality improvement</subject><subject>Sample size</subject><subject>Six Sigma</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM9KAzEQxoMoWGovPkHAm7A12ckmm2MpVgsFC63nJZtO6pbdTU3ag159QF_JSAs6c5g_fL8Z-Ai55WwMoNnDPnDOgCmlL8ggz3OVacXV5b_-moxi3LEUmkNZyAGZrd-QznvXHrG3SL2jK9PtW6Sr5jONPV34fputMXR0icH50JmzzlD5_UWXwVuM8YZcOdNGHJ3rkLzOHtfT52zx8jSfThaZBRCHTBYm17bIrZK8Bl6WG4GydjwvrNKurm0NTtSGS1cA10wILLWQpQHBLHOGw5Dcne7ug38_YjxUO38MfXpZ5UpzxRNTJNX4pNqaFqumd_4QjE25wa6xvkfXpP1ECdBQgBQJuD8BNvgYA7pqH5rOhI-Ks-rX2-rPW_gBZ7ppTA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Boroiu, Andrei Alexandru</creator><creator>Titu, Aurel Mihail</creator><creator>Boroiu, Alexandru</creator><creator>Dragomir, Mihai</creator><creator>Pop, Alina Bianca</creator><creator>Titu, Stefan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6908-5546</orcidid><orcidid>https://orcid.org/0000-0003-0561-4274</orcidid><orcidid>https://orcid.org/0000-0002-4784-8485</orcidid><orcidid>https://orcid.org/0000-0001-7313-3398</orcidid><orcidid>https://orcid.org/0000-0002-0054-6535</orcidid><orcidid>https://orcid.org/0000-0001-5910-8137</orcidid></search><sort><creationdate>20230301</creationdate><title>The Influence of Sample Size on Long-Term Performance of a 6σ Process</title><author>Boroiu, Andrei Alexandru ; Titu, Aurel Mihail ; Boroiu, Alexandru ; Dragomir, Mihai ; Pop, Alina Bianca ; Titu, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control limits</topic><topic>Lean manufacturing</topic><topic>Mathematical analysis</topic><topic>Quality improvement</topic><topic>Sample size</topic><topic>Six Sigma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroiu, Andrei Alexandru</creatorcontrib><creatorcontrib>Titu, Aurel Mihail</creatorcontrib><creatorcontrib>Boroiu, Alexandru</creatorcontrib><creatorcontrib>Dragomir, Mihai</creatorcontrib><creatorcontrib>Pop, Alina Bianca</creatorcontrib><creatorcontrib>Titu, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroiu, Andrei Alexandru</au><au>Titu, Aurel Mihail</au><au>Boroiu, Alexandru</au><au>Dragomir, Mihai</au><au>Pop, Alina Bianca</au><au>Titu, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Sample Size on Long-Term Performance of a 6σ Process</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>779</spage><pages>779-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, and the first result obtained is that a stable process can reach a maximum drift, but its value depends on the volume of the sample. It is also highlighted that, using only the criterion “values outside the control limits” for monitoring stability through the Xbar chart, a minimum value can be calculated for the long-term performance of a process depending on the sample size. The main conclusion resulting from the calculations is that, in the case of a 6σ process, the long-term performance is much better than the established value of 3400 PPB: For small volume samples of two pieces it is below 700 PPB, for three pieces it is below 200 PPB, and for samples with a volume greater than or equal to four pieces the performance already reaches values below 100 PPB! So, the long-term performance of 6σ processes is certainly even better than the known value of 3.4 PPM.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030779</doi><orcidid>https://orcid.org/0000-0002-6908-5546</orcidid><orcidid>https://orcid.org/0000-0003-0561-4274</orcidid><orcidid>https://orcid.org/0000-0002-4784-8485</orcidid><orcidid>https://orcid.org/0000-0001-7313-3398</orcidid><orcidid>https://orcid.org/0000-0002-0054-6535</orcidid><orcidid>https://orcid.org/0000-0001-5910-8137</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-03, Vol.11 (3), p.779 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2791710445 |
source | Publicly Available Content (ProQuest) |
subjects | Control limits Lean manufacturing Mathematical analysis Quality improvement Sample size Six Sigma |
title | The Influence of Sample Size on Long-Term Performance of a 6σ Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Sample%20Size%20on%20Long-Term%20Performance%20of%20a%206%CF%83%20Process&rft.jtitle=Processes&rft.au=Boroiu,%20Andrei%20Alexandru&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=779&rft.pages=779-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030779&rft_dat=%3Cgale_proqu%3EA743935364%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-65a29c52c761b3188d4e6bf125c79fbbcb3f4ba16f5319044e89468a340c0fa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791710445&rft_id=info:pmid/&rft_galeid=A743935364&rfr_iscdi=true |