Loading…

Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting

Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2023-04, Vol.24 (4), p.1-13
Main Authors: Huo, Guangyu, Zhang, Yong, Wang, Boyue, Gao, Junbin, Hu, Yongli, Yin, Baocai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2023.3234512