Loading…

HuCETA: A Framework for Human-Centered Embodied Teamwork Analytics

Collocated teamwork remains a pervasive practice across all professional sectors. Even though live observations and video analysis have been utilized for understanding embodied interaction of team members, these approaches are impractical for scaling up the provision of feedback that can promote dev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE pervasive computing 2023-01, Vol.22 (1), p.1-11
Main Authors: Echeverria, Vanessa, Martinez-Maldonado, Roberto, Yan, Lixiang, Zhao, Linxuan, Fernandez-Nieto, Gloria, Gasevic, Dragan, Shum, Simon Buckingham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collocated teamwork remains a pervasive practice across all professional sectors. Even though live observations and video analysis have been utilized for understanding embodied interaction of team members, these approaches are impractical for scaling up the provision of feedback that can promote developing high-performance teamwork skills. Enriching spaces with sensors capable of automatically capturing team activity data can improve learning and reflection. Yet, connecting the enormous amounts of data such sensors can generate with constructs related to teamwork remains challenging. This article presents a framework to support the development of human-centered embodied teamwork analytics by 1) enabling hybrid human-machine multimodal sensing; 2) embedding educators' and experts' knowledge into computational team models; and 3) generating human-driven data storytelling interfaces for reflection and decision making. This is illustrated through an in-the-wild study in the context of healthcare simulation, where predictive modeling, epistemic network analysis, and data storytelling are used to support educators and nursing teams.
ISSN:1536-1268
1558-2590
DOI:10.1109/MPRV.2022.3217454