Loading…
Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks
This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index i...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2023-04, Vol.31 (4), p.1305-1314 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863 |
container_end_page | 1314 |
container_issue | 4 |
container_start_page | 1305 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 31 |
creator | Zhang, Jiazheng Jin, Long Wang, Yang |
description | This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings. |
doi_str_mv | 10.1109/TFUZZ.2022.3198855 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793214991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857613</ieee_id><sourcerecordid>2793214991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</originalsourceid><addsrcrecordid>eNo9kEtPAkEQhCdGExH9A3rZxPPivB9HsxE0AT0IMeEyGdbeuLgwODOrgV_vIsRTdTpV3akPoWuCB4RgczcdzubzAcWUDhgxWgtxgnrEcJJjzPhpN2PJcqmwPEcXMS4xJlwQ3UOTwjeNW_jgUv0NWeHXKfgmq3zIJm2T6pVb15u2calbvG5jglXM3ur0kQ3b3W6bPUMbXNNJ-vHhM16is8o1Ea6O2kez4cO0eMzHL6On4n6cl9SIlCsHslTwrklVOVwCgQUjEjTXlayoWGDglDsOpRJCY8O0ElhKB1RxUKWWrI9uD3c3wX-1EJNd-jasu5eWKsMo4caQzkUPrjL4GANUdhO6QmFrCbZ7bPYPm91js0dsXejmEKoB4D9gtFCSMPYL1CJqPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793214991</pqid></control><display><type>article</type><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</creator><creatorcontrib>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</creatorcontrib><description>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3198855</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Artificial neural networks ; Collaboration ; Control systems ; Controllers ; Energy consumption ; Fuzzy control ; Fuzzy logic ; Fuzzy logic system ; Fuzzy systems ; Kinematics ; Kinetic energy ; Manipulators ; multiple manipulators ; neural networks ; Quadratic programming ; Robots ; Robust control ; Stability analysis ; Task analysis ; Trajectory</subject><ispartof>IEEE transactions on fuzzy systems, 2023-04, Vol.31 (4), p.1305-1314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</citedby><cites>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</cites><orcidid>0000-0002-5329-5098 ; 0000-0003-2481-962X ; 0000-0003-1963-791X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Zhang, Jiazheng</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</description><subject>Acceleration</subject><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Energy consumption</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy logic system</subject><subject>Fuzzy systems</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Manipulators</subject><subject>multiple manipulators</subject><subject>neural networks</subject><subject>Quadratic programming</subject><subject>Robots</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Task analysis</subject><subject>Trajectory</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAkEQhCdGExH9A3rZxPPivB9HsxE0AT0IMeEyGdbeuLgwODOrgV_vIsRTdTpV3akPoWuCB4RgczcdzubzAcWUDhgxWgtxgnrEcJJjzPhpN2PJcqmwPEcXMS4xJlwQ3UOTwjeNW_jgUv0NWeHXKfgmq3zIJm2T6pVb15u2calbvG5jglXM3ur0kQ3b3W6bPUMbXNNJ-vHhM16is8o1Ea6O2kez4cO0eMzHL6On4n6cl9SIlCsHslTwrklVOVwCgQUjEjTXlayoWGDglDsOpRJCY8O0ElhKB1RxUKWWrI9uD3c3wX-1EJNd-jasu5eWKsMo4caQzkUPrjL4GANUdhO6QmFrCbZ7bPYPm91js0dsXejmEKoB4D9gtFCSMPYL1CJqPw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Jiazheng</creator><creator>Jin, Long</creator><creator>Wang, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-2481-962X</orcidid><orcidid>https://orcid.org/0000-0003-1963-791X</orcidid></search><sort><creationdate>20230401</creationdate><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><author>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Energy consumption</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy logic system</topic><topic>Fuzzy systems</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Manipulators</topic><topic>multiple manipulators</topic><topic>neural networks</topic><topic>Quadratic programming</topic><topic>Robots</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Task analysis</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiazheng</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiazheng</au><au>Jin, Long</au><au>Wang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>1305</spage><epage>1314</epage><pages>1305-1314</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3198855</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-2481-962X</orcidid><orcidid>https://orcid.org/0000-0003-1963-791X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2023-04, Vol.31 (4), p.1305-1314 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_2793214991 |
source | IEEE Xplore (Online service) |
subjects | Acceleration Artificial neural networks Collaboration Control systems Controllers Energy consumption Fuzzy control Fuzzy logic Fuzzy logic system Fuzzy systems Kinematics Kinetic energy Manipulators multiple manipulators neural networks Quadratic programming Robots Robust control Stability analysis Task analysis Trajectory |
title | Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Control%20for%20Multimanipulator%20Systems%20With%20Fuzzy%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Zhang,%20Jiazheng&rft.date=2023-04-01&rft.volume=31&rft.issue=4&rft.spage=1305&rft.epage=1314&rft.pages=1305-1314&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3198855&rft_dat=%3Cproquest_cross%3E2793214991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793214991&rft_id=info:pmid/&rft_ieee_id=9857613&rfr_iscdi=true |