Loading…

Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks

This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2023-04, Vol.31 (4), p.1305-1314
Main Authors: Zhang, Jiazheng, Jin, Long, Wang, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863
cites cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863
container_end_page 1314
container_issue 4
container_start_page 1305
container_title IEEE transactions on fuzzy systems
container_volume 31
creator Zhang, Jiazheng
Jin, Long
Wang, Yang
description This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.
doi_str_mv 10.1109/TFUZZ.2022.3198855
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793214991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857613</ieee_id><sourcerecordid>2793214991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</originalsourceid><addsrcrecordid>eNo9kEtPAkEQhCdGExH9A3rZxPPivB9HsxE0AT0IMeEyGdbeuLgwODOrgV_vIsRTdTpV3akPoWuCB4RgczcdzubzAcWUDhgxWgtxgnrEcJJjzPhpN2PJcqmwPEcXMS4xJlwQ3UOTwjeNW_jgUv0NWeHXKfgmq3zIJm2T6pVb15u2calbvG5jglXM3ur0kQ3b3W6bPUMbXNNJ-vHhM16is8o1Ea6O2kez4cO0eMzHL6On4n6cl9SIlCsHslTwrklVOVwCgQUjEjTXlayoWGDglDsOpRJCY8O0ElhKB1RxUKWWrI9uD3c3wX-1EJNd-jasu5eWKsMo4caQzkUPrjL4GANUdhO6QmFrCbZ7bPYPm91js0dsXejmEKoB4D9gtFCSMPYL1CJqPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793214991</pqid></control><display><type>article</type><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</creator><creatorcontrib>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</creatorcontrib><description>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3198855</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Artificial neural networks ; Collaboration ; Control systems ; Controllers ; Energy consumption ; Fuzzy control ; Fuzzy logic ; Fuzzy logic system ; Fuzzy systems ; Kinematics ; Kinetic energy ; Manipulators ; multiple manipulators ; neural networks ; Quadratic programming ; Robots ; Robust control ; Stability analysis ; Task analysis ; Trajectory</subject><ispartof>IEEE transactions on fuzzy systems, 2023-04, Vol.31 (4), p.1305-1314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</citedby><cites>FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</cites><orcidid>0000-0002-5329-5098 ; 0000-0003-2481-962X ; 0000-0003-1963-791X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Zhang, Jiazheng</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</description><subject>Acceleration</subject><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Energy consumption</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy logic system</subject><subject>Fuzzy systems</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Manipulators</subject><subject>multiple manipulators</subject><subject>neural networks</subject><subject>Quadratic programming</subject><subject>Robots</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Task analysis</subject><subject>Trajectory</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAkEQhCdGExH9A3rZxPPivB9HsxE0AT0IMeEyGdbeuLgwODOrgV_vIsRTdTpV3akPoWuCB4RgczcdzubzAcWUDhgxWgtxgnrEcJJjzPhpN2PJcqmwPEcXMS4xJlwQ3UOTwjeNW_jgUv0NWeHXKfgmq3zIJm2T6pVb15u2calbvG5jglXM3ur0kQ3b3W6bPUMbXNNJ-vHhM16is8o1Ea6O2kez4cO0eMzHL6On4n6cl9SIlCsHslTwrklVOVwCgQUjEjTXlayoWGDglDsOpRJCY8O0ElhKB1RxUKWWrI9uD3c3wX-1EJNd-jasu5eWKsMo4caQzkUPrjL4GANUdhO6QmFrCbZ7bPYPm91js0dsXejmEKoB4D9gtFCSMPYL1CJqPw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Jiazheng</creator><creator>Jin, Long</creator><creator>Wang, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-2481-962X</orcidid><orcidid>https://orcid.org/0000-0003-1963-791X</orcidid></search><sort><creationdate>20230401</creationdate><title>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</title><author>Zhang, Jiazheng ; Jin, Long ; Wang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Energy consumption</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy logic system</topic><topic>Fuzzy systems</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Manipulators</topic><topic>multiple manipulators</topic><topic>neural networks</topic><topic>Quadratic programming</topic><topic>Robots</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Task analysis</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiazheng</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiazheng</au><au>Jin, Long</au><au>Wang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>1305</spage><epage>1314</epage><pages>1305-1314</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article develops a fuzzy-neural controller for the kinematic and collaborative control of multimanipulator systems. The entire control scheme is designed based on quadratic programming and implemented by a constructed fuzzy-neural controller. A hybrid minimum joint velocity-acceleration index is introduced to adjust the operating performance of each manipulator and reduce the kinetic energy consumption of the system. Besides, a simple but effective set of membership functions and rules are used to describe the variation of controller parameters caused by the operational complexity and vagueness during task executions. The stability and robustness of the controller are verified through theoretical analysis. Finally, simulations and experimental studies of the multimanipulator system are carried out supporting the practicality of our findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3198855</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-2481-962X</orcidid><orcidid>https://orcid.org/0000-0003-1963-791X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2023-04, Vol.31 (4), p.1305-1314
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2793214991
source IEEE Xplore (Online service)
subjects Acceleration
Artificial neural networks
Collaboration
Control systems
Controllers
Energy consumption
Fuzzy control
Fuzzy logic
Fuzzy logic system
Fuzzy systems
Kinematics
Kinetic energy
Manipulators
multiple manipulators
neural networks
Quadratic programming
Robots
Robust control
Stability analysis
Task analysis
Trajectory
title Collaborative Control for Multimanipulator Systems With Fuzzy Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Control%20for%20Multimanipulator%20Systems%20With%20Fuzzy%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Zhang,%20Jiazheng&rft.date=2023-04-01&rft.volume=31&rft.issue=4&rft.spage=1305&rft.epage=1314&rft.pages=1305-1314&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3198855&rft_dat=%3Cproquest_cross%3E2793214991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7ae6c7ed81ffa0ce1eb316e848f6f25b0e424a4ec7558093875066ae274e7c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793214991&rft_id=info:pmid/&rft_ieee_id=9857613&rfr_iscdi=true