Loading…

Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography

Hydrogen embrittlement mechanisms of steels have been studied for several decades. Understanding hydrogen diffusion behavior in steels is crucial towards both developing predictive models for hydrogen embrittlement and identifying mitigation strategies. However, because hydrogen has a low atomic mas...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Barton, Dallin J, Dan-Thien Nguyen, Perea, Daniel E, Stoerzinger, Kelsey A, Reyna Morales Lumagui, Lambeets, Sten V, Wirth, Mark G, Devaraj, Arun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barton, Dallin J
Dan-Thien Nguyen
Perea, Daniel E
Stoerzinger, Kelsey A
Reyna Morales Lumagui
Lambeets, Sten V
Wirth, Mark G
Devaraj, Arun
description Hydrogen embrittlement mechanisms of steels have been studied for several decades. Understanding hydrogen diffusion behavior in steels is crucial towards both developing predictive models for hydrogen embrittlement and identifying mitigation strategies. However, because hydrogen has a low atomic mass, it is extremely challenging to detect by most analytical methods. In recent years, cryogenic-transfer atom probe tomography (APT) of electrochemically-deuterium-charged steels has provided invaluable qualitative analysis of nanoscale deuterium traps such as carbides, dislocations, grain boundaries and interfaces between ferrite and cementite. Independently, cyclic voltammetry (CV) has provided valuable analysis of bulk hydrogen diffusion in steels. In this work, we use a combination of CV and cryogenic-transfer APT for quantitative analysis of deuterium pickup in electrolytically charged pure Fe (ferrite) and a model austenitic Fe18Cr14Ni alloy without any second phase or defect trap sites. The high solubility and low diffusivity of hydrogen in austenite versus ferrite are highlighted to result in clear observable signatures in CV and cryogenic-transfer APT results. The remaining challenges and pathway for enabling quantitative analysis of hydrogen pick up in steels is also discussed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2793246028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793246028</sourcerecordid><originalsourceid>FETCH-proquest_journals_27932460283</originalsourceid><addsrcrecordid>eNqNj91Kw0AQhYMgWLTvMOB1IW7652WILV4qBG_LZDNJt-zuxNldZZ_Nl7MtPoBXh8P5-ODcFDNVVU-L7VKpu2IewqksS7XeqNWqmhU_LX-j9AHeE_poIkbzRVB7tDmYADzAC6VIYpKDugssUzTswXjYk4iJBOh7qFOI5C-tT2L8CDtLOgrrIzmj0UJzRBkvQ5ehYTfhlWqytkbDB9uIzlGUfLU1knk86zS0gj4MJFBHdvAm3BG07HgUnI75obgd0Aaa_-V98bjftc3rYhL-TBTi4cRJzlfCQW2eK7Vcl2pb_Y_6Bb0JZ6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793246028</pqid></control><display><type>article</type><title>Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography</title><source>Publicly Available Content (ProQuest)</source><creator>Barton, Dallin J ; Dan-Thien Nguyen ; Perea, Daniel E ; Stoerzinger, Kelsey A ; Reyna Morales Lumagui ; Lambeets, Sten V ; Wirth, Mark G ; Devaraj, Arun</creator><creatorcontrib>Barton, Dallin J ; Dan-Thien Nguyen ; Perea, Daniel E ; Stoerzinger, Kelsey A ; Reyna Morales Lumagui ; Lambeets, Sten V ; Wirth, Mark G ; Devaraj, Arun</creatorcontrib><description>Hydrogen embrittlement mechanisms of steels have been studied for several decades. Understanding hydrogen diffusion behavior in steels is crucial towards both developing predictive models for hydrogen embrittlement and identifying mitigation strategies. However, because hydrogen has a low atomic mass, it is extremely challenging to detect by most analytical methods. In recent years, cryogenic-transfer atom probe tomography (APT) of electrochemically-deuterium-charged steels has provided invaluable qualitative analysis of nanoscale deuterium traps such as carbides, dislocations, grain boundaries and interfaces between ferrite and cementite. Independently, cyclic voltammetry (CV) has provided valuable analysis of bulk hydrogen diffusion in steels. In this work, we use a combination of CV and cryogenic-transfer APT for quantitative analysis of deuterium pickup in electrolytically charged pure Fe (ferrite) and a model austenitic Fe18Cr14Ni alloy without any second phase or defect trap sites. The high solubility and low diffusivity of hydrogen in austenite versus ferrite are highlighted to result in clear observable signatures in CV and cryogenic-transfer APT results. The remaining challenges and pathway for enabling quantitative analysis of hydrogen pick up in steels is also discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic properties ; Austenite ; Cemented carbides ; Cementite ; Crystal defects ; Deuterium ; Diffusion ; Ferrite ; Grain boundaries ; Hydrogen ; Hydrogen embrittlement ; Prediction models ; Qualitative analysis ; Quantitative analysis ; Tomography ; Voltammetry</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2793246028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Barton, Dallin J</creatorcontrib><creatorcontrib>Dan-Thien Nguyen</creatorcontrib><creatorcontrib>Perea, Daniel E</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Reyna Morales Lumagui</creatorcontrib><creatorcontrib>Lambeets, Sten V</creatorcontrib><creatorcontrib>Wirth, Mark G</creatorcontrib><creatorcontrib>Devaraj, Arun</creatorcontrib><title>Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography</title><title>arXiv.org</title><description>Hydrogen embrittlement mechanisms of steels have been studied for several decades. Understanding hydrogen diffusion behavior in steels is crucial towards both developing predictive models for hydrogen embrittlement and identifying mitigation strategies. However, because hydrogen has a low atomic mass, it is extremely challenging to detect by most analytical methods. In recent years, cryogenic-transfer atom probe tomography (APT) of electrochemically-deuterium-charged steels has provided invaluable qualitative analysis of nanoscale deuterium traps such as carbides, dislocations, grain boundaries and interfaces between ferrite and cementite. Independently, cyclic voltammetry (CV) has provided valuable analysis of bulk hydrogen diffusion in steels. In this work, we use a combination of CV and cryogenic-transfer APT for quantitative analysis of deuterium pickup in electrolytically charged pure Fe (ferrite) and a model austenitic Fe18Cr14Ni alloy without any second phase or defect trap sites. The high solubility and low diffusivity of hydrogen in austenite versus ferrite are highlighted to result in clear observable signatures in CV and cryogenic-transfer APT results. The remaining challenges and pathway for enabling quantitative analysis of hydrogen pick up in steels is also discussed.</description><subject>Atomic properties</subject><subject>Austenite</subject><subject>Cemented carbides</subject><subject>Cementite</subject><subject>Crystal defects</subject><subject>Deuterium</subject><subject>Diffusion</subject><subject>Ferrite</subject><subject>Grain boundaries</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Prediction models</subject><subject>Qualitative analysis</subject><subject>Quantitative analysis</subject><subject>Tomography</subject><subject>Voltammetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNj91Kw0AQhYMgWLTvMOB1IW7652WILV4qBG_LZDNJt-zuxNldZZ_Nl7MtPoBXh8P5-ODcFDNVVU-L7VKpu2IewqksS7XeqNWqmhU_LX-j9AHeE_poIkbzRVB7tDmYADzAC6VIYpKDugssUzTswXjYk4iJBOh7qFOI5C-tT2L8CDtLOgrrIzmj0UJzRBkvQ5ehYTfhlWqytkbDB9uIzlGUfLU1knk86zS0gj4MJFBHdvAm3BG07HgUnI75obgd0Aaa_-V98bjftc3rYhL-TBTi4cRJzlfCQW2eK7Vcl2pb_Y_6Bb0JZ6g</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Barton, Dallin J</creator><creator>Dan-Thien Nguyen</creator><creator>Perea, Daniel E</creator><creator>Stoerzinger, Kelsey A</creator><creator>Reyna Morales Lumagui</creator><creator>Lambeets, Sten V</creator><creator>Wirth, Mark G</creator><creator>Devaraj, Arun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230330</creationdate><title>Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography</title><author>Barton, Dallin J ; Dan-Thien Nguyen ; Perea, Daniel E ; Stoerzinger, Kelsey A ; Reyna Morales Lumagui ; Lambeets, Sten V ; Wirth, Mark G ; Devaraj, Arun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27932460283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic properties</topic><topic>Austenite</topic><topic>Cemented carbides</topic><topic>Cementite</topic><topic>Crystal defects</topic><topic>Deuterium</topic><topic>Diffusion</topic><topic>Ferrite</topic><topic>Grain boundaries</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Prediction models</topic><topic>Qualitative analysis</topic><topic>Quantitative analysis</topic><topic>Tomography</topic><topic>Voltammetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Barton, Dallin J</creatorcontrib><creatorcontrib>Dan-Thien Nguyen</creatorcontrib><creatorcontrib>Perea, Daniel E</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Reyna Morales Lumagui</creatorcontrib><creatorcontrib>Lambeets, Sten V</creatorcontrib><creatorcontrib>Wirth, Mark G</creatorcontrib><creatorcontrib>Devaraj, Arun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barton, Dallin J</au><au>Dan-Thien Nguyen</au><au>Perea, Daniel E</au><au>Stoerzinger, Kelsey A</au><au>Reyna Morales Lumagui</au><au>Lambeets, Sten V</au><au>Wirth, Mark G</au><au>Devaraj, Arun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography</atitle><jtitle>arXiv.org</jtitle><date>2023-03-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Hydrogen embrittlement mechanisms of steels have been studied for several decades. Understanding hydrogen diffusion behavior in steels is crucial towards both developing predictive models for hydrogen embrittlement and identifying mitigation strategies. However, because hydrogen has a low atomic mass, it is extremely challenging to detect by most analytical methods. In recent years, cryogenic-transfer atom probe tomography (APT) of electrochemically-deuterium-charged steels has provided invaluable qualitative analysis of nanoscale deuterium traps such as carbides, dislocations, grain boundaries and interfaces between ferrite and cementite. Independently, cyclic voltammetry (CV) has provided valuable analysis of bulk hydrogen diffusion in steels. In this work, we use a combination of CV and cryogenic-transfer APT for quantitative analysis of deuterium pickup in electrolytically charged pure Fe (ferrite) and a model austenitic Fe18Cr14Ni alloy without any second phase or defect trap sites. The high solubility and low diffusivity of hydrogen in austenite versus ferrite are highlighted to result in clear observable signatures in CV and cryogenic-transfer APT results. The remaining challenges and pathway for enabling quantitative analysis of hydrogen pick up in steels is also discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2793246028
source Publicly Available Content (ProQuest)
subjects Atomic properties
Austenite
Cemented carbides
Cementite
Crystal defects
Deuterium
Diffusion
Ferrite
Grain boundaries
Hydrogen
Hydrogen embrittlement
Prediction models
Qualitative analysis
Quantitative analysis
Tomography
Voltammetry
title Towards Quantitative Analysis of Deuterium Absorption in Ferrite and Austenite during Electrochemical Charging by Comparing Cyclic Voltammetry and Cryogenic Transfer Atom Probe Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Quantitative%20Analysis%20of%20Deuterium%20Absorption%20in%20Ferrite%20and%20Austenite%20during%20Electrochemical%20Charging%20by%20Comparing%20Cyclic%20Voltammetry%20and%20Cryogenic%20Transfer%20Atom%20Probe%20Tomography&rft.jtitle=arXiv.org&rft.au=Barton,%20Dallin%20J&rft.date=2023-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2793246028%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27932460283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793246028&rft_id=info:pmid/&rfr_iscdi=true