Loading…
Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer
The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by...
Saved in:
Published in: | Russian physics journal 2023-03, Vol.65 (11), p.1862-1866 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93 |
container_end_page | 1866 |
container_issue | 11 |
container_start_page | 1862 |
container_title | Russian physics journal |
container_volume | 65 |
creator | Ivanova, A. I. Bleykher, G. A. Vakhrushev, D. O. Korneva, O. S. |
description | The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties. |
doi_str_mv | 10.1007/s11182-023-02843-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2793434315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745156165</galeid><sourcerecordid>A745156165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</originalsourceid><addsrcrecordid>eNp9kctq3TAQhk1poWmaF-hK0LVSXXzTMpwmzYFDE3JZi4k8chRs2ZXkgl-pT1mduNBdGISGn_-bEfqL4gtn55yx5lvknLeCMiHzaUtJ-bvihFeNpEqI9n3uWV3Stm2bj8WnGF8Yy1jdnBR_fi4jBmdgIPduXAZIbvJksuQBxxkDpCUguXI4dOT76mF0JhLns9f3A9JdWGN6RQdnMgeJ3OGMySX3G4eV3i5DxI5cu_6Z7n1CH11ayT479-M8gE_bOvAdufQY-vWog0kki-kZyf0SLBgkB1gxfC4-WMjzzv7dp8Xj1eXD7poebn7sdxcHaiRTiVZWqpIjEx2CUKaD0taVbUUpGoay47UUtYQnA0-KdZILhq3tFFNMlgAclTwtvm5z5zD9WjAm_TItweeVWjRKlrl4lV3nm6uHAbXzdkoBTK4Ox-NfoHVZv2jKilc1r4-A2AATphgDWj0HN0JYNWf6GKLeQtQ5RP0aouYZkhsUs9n3GP6_5Q3qLzX9oa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793434315</pqid></control><display><type>article</type><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><source>Springer Nature</source><creator>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</creator><creatorcontrib>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</creatorcontrib><description>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-023-02843-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Condensed Matter Physics ; Diffusion layers ; Enhanced diffusion ; Hadrons ; Heavy Ions ; Ion beams ; Ion implantation ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Numerical analysis ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Radiation effects ; Silicon ; Simulation methods ; Single crystals ; Surface layers ; Temperature distribution ; Theoretical ; Thermal conductivity</subject><ispartof>Russian physics journal, 2023-03, Vol.65 (11), p.1862-1866</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivanova, A. I.</creatorcontrib><creatorcontrib>Bleykher, G. A.</creatorcontrib><creatorcontrib>Vakhrushev, D. O.</creatorcontrib><creatorcontrib>Korneva, O. S.</creatorcontrib><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Diffusion layers</subject><subject>Enhanced diffusion</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion beams</subject><subject>Ion implantation</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation effects</subject><subject>Silicon</subject><subject>Simulation methods</subject><subject>Single crystals</subject><subject>Surface layers</subject><subject>Temperature distribution</subject><subject>Theoretical</subject><subject>Thermal conductivity</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3TAQhk1poWmaF-hK0LVSXXzTMpwmzYFDE3JZi4k8chRs2ZXkgl-pT1mduNBdGISGn_-bEfqL4gtn55yx5lvknLeCMiHzaUtJ-bvihFeNpEqI9n3uWV3Stm2bj8WnGF8Yy1jdnBR_fi4jBmdgIPduXAZIbvJksuQBxxkDpCUguXI4dOT76mF0JhLns9f3A9JdWGN6RQdnMgeJ3OGMySX3G4eV3i5DxI5cu_6Z7n1CH11ayT479-M8gE_bOvAdufQY-vWog0kki-kZyf0SLBgkB1gxfC4-WMjzzv7dp8Xj1eXD7poebn7sdxcHaiRTiVZWqpIjEx2CUKaD0taVbUUpGoay47UUtYQnA0-KdZILhq3tFFNMlgAclTwtvm5z5zD9WjAm_TItweeVWjRKlrl4lV3nm6uHAbXzdkoBTK4Ox-NfoHVZv2jKilc1r4-A2AATphgDWj0HN0JYNWf6GKLeQtQ5RP0aouYZkhsUs9n3GP6_5Q3qLzX9oa8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ivanova, A. I.</creator><creator>Bleykher, G. A.</creator><creator>Vakhrushev, D. O.</creator><creator>Korneva, O. S.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><author>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Diffusion layers</topic><topic>Enhanced diffusion</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion beams</topic><topic>Ion implantation</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation effects</topic><topic>Silicon</topic><topic>Simulation methods</topic><topic>Single crystals</topic><topic>Surface layers</topic><topic>Temperature distribution</topic><topic>Theoretical</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, A. I.</creatorcontrib><creatorcontrib>Bleykher, G. A.</creatorcontrib><creatorcontrib>Vakhrushev, D. O.</creatorcontrib><creatorcontrib>Korneva, O. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, A. I.</au><au>Bleykher, G. A.</au><au>Vakhrushev, D. O.</au><au>Korneva, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>65</volume><issue>11</issue><spage>1862</spage><epage>1866</epage><pages>1862-1866</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11182-023-02843-1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2023-03, Vol.65 (11), p.1862-1866 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2793434315 |
source | Springer Nature |
subjects | Analysis Condensed Matter Physics Diffusion layers Enhanced diffusion Hadrons Heavy Ions Ion beams Ion implantation Lasers Mathematical and Computational Physics Nuclear Physics Numerical analysis Optical Devices Optics Photonics Physics Physics and Astronomy Radiation effects Silicon Simulation methods Single crystals Surface layers Temperature distribution Theoretical Thermal conductivity |
title | Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Temperature%20Field%20Dynamics%20in%20Single-Crystal%20Silicon%20at%20Repetitively-Pulsed%20High-Intensity%20Ion%20Implantation%20and%20Energy%20Impact%20on%20the%20Surface%20Layer&rft.jtitle=Russian%20physics%20journal&rft.au=Ivanova,%20A.%20I.&rft.date=2023-03-01&rft.volume=65&rft.issue=11&rft.spage=1862&rft.epage=1866&rft.pages=1862-1866&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-023-02843-1&rft_dat=%3Cgale_proqu%3EA745156165%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793434315&rft_id=info:pmid/&rft_galeid=A745156165&rfr_iscdi=true |