Loading…

Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer

The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by...

Full description

Saved in:
Bibliographic Details
Published in:Russian physics journal 2023-03, Vol.65 (11), p.1862-1866
Main Authors: Ivanova, A. I., Bleykher, G. A., Vakhrushev, D. O., Korneva, O. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93
container_end_page 1866
container_issue 11
container_start_page 1862
container_title Russian physics journal
container_volume 65
creator Ivanova, A. I.
Bleykher, G. A.
Vakhrushev, D. O.
Korneva, O. S.
description The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.
doi_str_mv 10.1007/s11182-023-02843-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2793434315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745156165</galeid><sourcerecordid>A745156165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</originalsourceid><addsrcrecordid>eNp9kctq3TAQhk1poWmaF-hK0LVSXXzTMpwmzYFDE3JZi4k8chRs2ZXkgl-pT1mduNBdGISGn_-bEfqL4gtn55yx5lvknLeCMiHzaUtJ-bvihFeNpEqI9n3uWV3Stm2bj8WnGF8Yy1jdnBR_fi4jBmdgIPduXAZIbvJksuQBxxkDpCUguXI4dOT76mF0JhLns9f3A9JdWGN6RQdnMgeJ3OGMySX3G4eV3i5DxI5cu_6Z7n1CH11ayT479-M8gE_bOvAdufQY-vWog0kki-kZyf0SLBgkB1gxfC4-WMjzzv7dp8Xj1eXD7poebn7sdxcHaiRTiVZWqpIjEx2CUKaD0taVbUUpGoay47UUtYQnA0-KdZILhq3tFFNMlgAclTwtvm5z5zD9WjAm_TItweeVWjRKlrl4lV3nm6uHAbXzdkoBTK4Ox-NfoHVZv2jKilc1r4-A2AATphgDWj0HN0JYNWf6GKLeQtQ5RP0aouYZkhsUs9n3GP6_5Q3qLzX9oa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793434315</pqid></control><display><type>article</type><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><source>Springer Nature</source><creator>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</creator><creatorcontrib>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</creatorcontrib><description>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-023-02843-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Condensed Matter Physics ; Diffusion layers ; Enhanced diffusion ; Hadrons ; Heavy Ions ; Ion beams ; Ion implantation ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Numerical analysis ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Radiation effects ; Silicon ; Simulation methods ; Single crystals ; Surface layers ; Temperature distribution ; Theoretical ; Thermal conductivity</subject><ispartof>Russian physics journal, 2023-03, Vol.65 (11), p.1862-1866</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivanova, A. I.</creatorcontrib><creatorcontrib>Bleykher, G. A.</creatorcontrib><creatorcontrib>Vakhrushev, D. O.</creatorcontrib><creatorcontrib>Korneva, O. S.</creatorcontrib><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Diffusion layers</subject><subject>Enhanced diffusion</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion beams</subject><subject>Ion implantation</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation effects</subject><subject>Silicon</subject><subject>Simulation methods</subject><subject>Single crystals</subject><subject>Surface layers</subject><subject>Temperature distribution</subject><subject>Theoretical</subject><subject>Thermal conductivity</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3TAQhk1poWmaF-hK0LVSXXzTMpwmzYFDE3JZi4k8chRs2ZXkgl-pT1mduNBdGISGn_-bEfqL4gtn55yx5lvknLeCMiHzaUtJ-bvihFeNpEqI9n3uWV3Stm2bj8WnGF8Yy1jdnBR_fi4jBmdgIPduXAZIbvJksuQBxxkDpCUguXI4dOT76mF0JhLns9f3A9JdWGN6RQdnMgeJ3OGMySX3G4eV3i5DxI5cu_6Z7n1CH11ayT479-M8gE_bOvAdufQY-vWog0kki-kZyf0SLBgkB1gxfC4-WMjzzv7dp8Xj1eXD7poebn7sdxcHaiRTiVZWqpIjEx2CUKaD0taVbUUpGoay47UUtYQnA0-KdZILhq3tFFNMlgAclTwtvm5z5zD9WjAm_TItweeVWjRKlrl4lV3nm6uHAbXzdkoBTK4Ox-NfoHVZv2jKilc1r4-A2AATphgDWj0HN0JYNWf6GKLeQtQ5RP0aouYZkhsUs9n3GP6_5Q3qLzX9oa8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ivanova, A. I.</creator><creator>Bleykher, G. A.</creator><creator>Vakhrushev, D. O.</creator><creator>Korneva, O. S.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</title><author>Ivanova, A. I. ; Bleykher, G. A. ; Vakhrushev, D. O. ; Korneva, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Diffusion layers</topic><topic>Enhanced diffusion</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion beams</topic><topic>Ion implantation</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation effects</topic><topic>Silicon</topic><topic>Simulation methods</topic><topic>Single crystals</topic><topic>Surface layers</topic><topic>Temperature distribution</topic><topic>Theoretical</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, A. I.</creatorcontrib><creatorcontrib>Bleykher, G. A.</creatorcontrib><creatorcontrib>Vakhrushev, D. O.</creatorcontrib><creatorcontrib>Korneva, O. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, A. I.</au><au>Bleykher, G. A.</au><au>Vakhrushev, D. O.</au><au>Korneva, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>65</volume><issue>11</issue><spage>1862</spage><epage>1866</epage><pages>1862-1866</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The surface layer modification of materials and coatings by ion beams is used in many fields of science and technology. The high-intensity implantation by ion beams with high power density and submillisecond duration, implies a significant pulsed heating of the irradiated surface layer, followed by its cooling due to the heat removal deep in the material thanks to its thermal conductivity and the implementation of repetitivelypulsed radiation-enhanced diffusion of atoms to depths exceeding the projective ion range. Based on the numerical simulation, the paper studies the temperature field dynamics in a silicon target at single-pulse and repetitively-pulsed submillisecond ion beams with 109 W/m2 pulsed power density. Temperature conditions are determined for the ion-implanted layer, which correspond to that of the radiation-induced diffusion of implanted elements, while the temperature in the matrix material does not lead to a deterioration of its microstructure and properties.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11182-023-02843-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2023-03, Vol.65 (11), p.1862-1866
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2793434315
source Springer Nature
subjects Analysis
Condensed Matter Physics
Diffusion layers
Enhanced diffusion
Hadrons
Heavy Ions
Ion beams
Ion implantation
Lasers
Mathematical and Computational Physics
Nuclear Physics
Numerical analysis
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Radiation effects
Silicon
Simulation methods
Single crystals
Surface layers
Temperature distribution
Theoretical
Thermal conductivity
title Numerical Simulation of Temperature Field Dynamics in Single-Crystal Silicon at Repetitively-Pulsed High-Intensity Ion Implantation and Energy Impact on the Surface Layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Temperature%20Field%20Dynamics%20in%20Single-Crystal%20Silicon%20at%20Repetitively-Pulsed%20High-Intensity%20Ion%20Implantation%20and%20Energy%20Impact%20on%20the%20Surface%20Layer&rft.jtitle=Russian%20physics%20journal&rft.au=Ivanova,%20A.%20I.&rft.date=2023-03-01&rft.volume=65&rft.issue=11&rft.spage=1862&rft.epage=1866&rft.pages=1862-1866&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-023-02843-1&rft_dat=%3Cgale_proqu%3EA745156165%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-5f3941e02dea29cda4f65f824270e3d163263abcab90d3120e8fd909034aa1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793434315&rft_id=info:pmid/&rft_galeid=A745156165&rfr_iscdi=true